9,356 research outputs found

    Pairing of 1-hexyl-3-methylimidazolium and tetrafluoroborate ions in n-pentanol

    Full text link
    Molecular dynamics simulations are obtained and analyzed to study pairing of 1-hexyl-3-methylimidazolium and tetrafluoroborate ions in n-pentanol, in particular by evaluating the potential-of-mean-force between counter ions. The present molecular model and simulation accurately predicts the dissociation constant Kd in comparison to experiment, and thus the behavior and magnitudes for the ion-pair pmf at molecular distances, even though the dielectric constant of the simulated solvent differs from the experimental value by about 30%. A naive dielectric model does not capture molecule structural effects such as multiple conformations and binding geometries of the Hmim+ and BF4- ion-pairs. Mobilities identify multiple time-scale effects in the autocorrelation of the random forces on the ions, and specifically a slow, exponential time-decay of those long-ranged forces associated here with dielectric friction effects.Comment: 5 pages, 7 figures. V2: Figs. 4 & 7 redrawn for better visual clarity with log-scales. No change in results. In press J. Chem. Phys. 201

    Origin of entropy convergence in hydrophobic hydration and protein folding

    Get PDF
    An information theory model is used to construct a molecular explanation why hydrophobic solvation entropies measured in calorimetry of protein unfolding converge at a common temperature. The entropy convergence follows from the weak temperature dependence of occupancy fluctuations for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior between water and common organic solvents is the relative temperature insensitivity of the water isothermal compressibility. The information theory model provides a quantitative description of small molecule hydration and predicts a negative entropy at convergence. Interpretations of entropic contributions to protein folding should account for this result.Comment: Phys. Rev. Letts. (in press 1996), 3 pages, 3 figure

    Magnetic order in the quasi-one-dimensional spin 1/2 chain, copper pyrazine dinitrate

    Get PDF
    We present the first evidence of magnetic order in the quasi-one-dimensional spin 1/2 molecular chain compound, copper pyrazine dinitrate Cu(C4H4N2)(NO3)2}. Zero field muon-spin relaxation measurements made at dilution refrigerator temperatures show oscillations in the measured asymmetry, characteristic of a quasistatic magnetic field at the muon sites. Our measurements provide convincing evidence for long range magnetic order below a temperature T_N=107(1) mK. This leads to an estimate of the interchain coupling constant of |J'|/k_B=0.046 K and to a ratio |J'/J| = 4.4 x 10^-3.Comment: 4 pages, 3 figures. Submitted to Physical Review Letter

    Spin-memory loss at Co/Ru interfaces

    Full text link
    We have determined the spin-memory-loss parameter, δCo/Ru\delta_{Co/Ru}, by measuring the transmission of spin-triplet and spin-singlet Cooper pairs across Co/Ru interfaces in Josephson junctions and by Current-Perpendicular-to-Plane Giant Magnetoresistance (CPP-GMR) techniques. The probability of spin-memory loss at the Co/Ru interface is (1exp(δCo/Ru))(1-exp(-\delta_{Co/Ru})). From the CPP-MR, we obtain δCo/Ru=0.340.02+0.04\delta_{Co/Ru} = 0.34^{+0.04}_{-0.02} that is in good agreement with δCo/Ru=0.35±0.08\delta_{Co/Ru} = 0.35 \pm 0.08 obtained from spin-triplet transmission. For spin-singlet transmission, we have δCo/Ru=0.64±0.05\delta_{Co/Ru} = 0.64 \pm 0.05 that is different from that obtained from CPP-GMR and spin-triplet transmission. The source of this difference is not understood.Comment: 9 pages, 9 figure

    Thermodynamic and magnetic properties of the layered triangular magnet NaNiO2

    Full text link
    We report muon-spin rotation, heat capacity, magnetization, and ac magnetic susceptibility measurements of the layered spin-1/2 antiferromagnet NaNiO2. These show the onset of long-range magnetic order below T_N = 19.5K. Rapid muon depolarization persisting to about 5K above T_N is consistent with the presence of short-range magnetic order. The temperature and frequency dependence of the ac susceptibility suggests that magnetic clusters persist above 25K in the paramagnetic state and that their volume fraction decreases with increasing temperature. A frequency dependent peak in the ac magnetic susceptibility at T_sf = 3K is observed, consistent with a slowing of spin fluctuations at this temperature. A partial magnetic phase diagram is deduced.Comment: 4 pages, 4 figure

    Muon-spin relaxation and heat capacity measurements on the magnetoelectric and multiferroic pyroxenes LiFeSi2O6 and NaFeSi2O6

    Full text link
    The results of muon-spin relaxation and heat capacity measurements on two pyroxene compounds LiFeSi2O6 and NaFeSi2O6 demonstrate that despite their underlying structural similarity the magnetic ordering is considerably different. In LiFeSi2O6 a single muon precession frequency is observed below TN, consistent with a single peak at TN in the heat capacity and a commensurate magnetic structure. In applied magnetic fields the heat capacity peak splits in two. In contrast, for natural NaFeSi2O6, where multiferroicity has been observed in zero-magnetic-field, a rapid Gaussian depolarization is observed showing that the magnetic structure is more complex. Synthetic NaFeSi2O6 shows a single muon precession frequency but with a far larger damping rate than in the lithium compound. Heat capacity measurements reproduce the phase diagrams previously derived from other techniques and demonstrate that the magnetic entropy is mostly associated with the build up of correlations in the quasi-one-dimensional Fe3+ chains

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-

    The phase transition in the localized ferromagnet EuO probed by muSR

    Get PDF
    We report results of muon spin rotation measurements performed on the ferromagnetic semiconductor EuO, which is one of the best approximations to a localized ferromagnet. We argue that implanted muons are sensitive to the internal field primarily through a combination of hyperfine and Lorentz fields. The temperature dependences of the internal field and the relaxation rate have been measured and are compared with previous theoretical predictions.Comment: 4 pages, 4 figure
    corecore