292 research outputs found

    Plasma methionine sulfoxide in persons with familial Alzheimer’s disease mutations

    Get PDF
    The final, published version of this article is available at http://www.karger.com/?doi=10.1159/000338546.BACKGROUND: Convergent evidence suggests that oxidative stress plays a central role in the pathology of Alzheimer’s disease (AD). We asked if consequently, oxidation of methionine residues to methionine sulfoxide (MetO) increased in plasma proteins of persons carrying familial AD (FAD) mutations. METHODS: Plasma was collected from 31 persons from families harboring PSEN1 or APP mutations. Using Western blot analysis with a novel anti-MetO polyclonal antibody, MetO levels were measured and compared between FAD mutation carriers (MCs) and non-mutation carrying (NCs) kin. RESULTS: A MetO-positive 120 kDa gel band distinguished FAD MCs and NCs (mean 11.4 ± 2.8 vs. 4.0 ± 3.1, p = 0.02). In a subset of subjects for whom both measurements were available, MetO levels correlated well with plasma F2-isoprostane (r = 0.81, p < 0.001) and superoxide dismutase 1 (r = 0.52, p = 0.004) levels. CONCLUSIONS: Our data provide evidence for elevated MetO levels in persons carrying FAD mutations that correlate with other indices of oxidative stress and suggest that plasma oxidative stress markers may be useful for diagnosis of AD

    Cognitive disabilities and bioethical implications in down syndrome

    Get PDF
    Down syndrome is a genetic syndrome related to trisomy 21, and characterized by intellectual and adaptive deficiencies, facial deformities, cardiopathiacenitis and hypotonia that determine a specific cognitive behavioral phenotype. The behavioral and psychiatric cognitive phenotype and its evolutionary profile impose bioethical considerations in the down to promote better and personalized clinical and relief, diagnostic and therapeutic strategies to favor an adequate insertion of the down in the scholastic and work environment

    Alzheimer's disease: using gene/protein network machine learning for molecule discovery in olive oil

    Get PDF
    Alzheimer's disease (AD) poses a profound human, social, and economic burden. Previous studies suggest that extra virgin olive oil (EVOO) may be helpful in preventing cognitive decline. Here, we present a network machine learning method for identifying bioactive phytochemicals in EVOO with the highest potential to impact the protein network linked to the development and progression of the AD. A balanced classification accuracy of 70.3 ± 2.6% was achieved in fivefold cross-validation settings for predicting late-stage experimental drugs targeting AD from other clinically approved drugs. The calibrated machine learning algorithm was then used to predict the likelihood of existing drugs and known EVOO phytochemicals to be similar in action to the drugs impacting AD protein networks. These analyses identified the following ten EVOO phytochemicals with the highest likelihood of being active against AD: quercetin, genistein, luteolin, palmitoleate, stearic acid, apigenin, epicatechin, kaempferol, squalene, and daidzein (in the order from the highest to the lowest likelihood). This in silico study presents a framework that brings together artificial intelligence, analytical chemistry, and omics studies to identify unique therapeutic agents. It provides new insights into how EVOO constituents may help treat or prevent AD and potentially provide a basis for consideration in future clinical studies

    Refractive outcome in preterm newborns with ROP after propranolol treatment. A retrospective observational cohort study

    Get PDF
    Background: Recent explorative studies suggest that propranolol reduces retinopathy of prematurity (ROP) progression, but the short-term effects of propranolol treatment at 1 year of corrected age have not been extensively evaluated. Methods: A multi-center retrospective observational cohort study was conducted to assess the physical development and the refractive outcome of infants with prior ROP treated with propranolol. Forty-nine infants treated with propranolol were compared with an equal number of patients who did not receive any propranolol therapy and represent the control group, with comparable anthropometrical characteristics and stages of ROP. Results: The weight, length, and head circumference at 1 year of corrected age were similar between infants who had been treated, or not, with propranolol, without any statistically significant differences. Refractive evaluation at 1 year showed spherical equivalent values decreasing with the progression of ROP toward more severe stages of the disease, together with an increasing number of infants with severe myopia. On the contrary, no differences were observed between infants who had been treated with propranolol and those who had not. Conclusion: This study confirms that the progression of ROP induces an increase of refractive errors and suggests that propranolol itself does not affect the refractive outcome. Therefore, if the efficacy of propranolol in counteracting ROP progression is confirmed by further clinical trials, the conclusion will be that propranolol might indirectly improve the visual outcome, reducing the progression of ROP

    From intensive care to step-down units: Managing patients throughput in response to COVID-19

    Get PDF
    Quality problem or issue: The on-going COVID-19 pandemic may cause the collapse of healthcare systems because of unprecedented hospitalization rates. Initial assessment: A total of 8.2 individuals per 1000 inhabitants have been diagnosed with COVID-19 in our province. The hospital predisposed 110 beds for COVID-19 patients: On the day of the local peak, 90% of them were occupied and intensive care unit (ICU) faced unprecedented admission rates, fearing system collapse. Choice of solution: Instead of increasing the number of ICU beds, the creation of a step-down unit (SDU) close to the ICU was preferred: The aim was to safely improve the transfer of patients and to relieve ICU from the risk of overload. Implementation: A nine-bed SDU was created next to the ICU, led by intensivists and ICU nurses, with adequate personal protective equipment, monitoring systems and ventilators for respiratory support when needed. A second six-bed SDU was also created. Evaluation: Patients were clinically comparable to those of most reports from Western Countries now available in the literature. ICU never needed supernumerary beds, no patient died in the SDU, and there was no waiting time for ICU admission of critical patients. SDU has been affordable from human resources, safety and economic points of view. Lessons learned: COVID-19 is like an enduring mass casualty incident. Solutions tailored on local epidemiology and available resources should be implemented to preserve the efficiency and adaptability of our institutions and provide the adequate sanitary response

    Aptamer-Mediated Delivery of Splice-Switching Oligonucleotides to the Nuclei of Cancer Cells

    Get PDF
    To reduce the adverse effects of cancer therapies and increase their efficacy, new delivery agents that specifically target cancer cells are needed. We and others have shown that aptamers can selectively deliver therapeutic oligonucleotides to the endosome and cytoplasm of cancer cells that express a particular cell surface receptor. Identifying a single aptamer that can internalize into many different cancer cell-types would increase the utility of aptamer-mediated delivery of therapeutic agents. We investigated the ability of the nucleolin aptamer (AS1411) to internalize into multiple cancer cell types and observed that it internalizes into a wide variety of cancer cells and migrates to the nucleus. To determine if the aptamer could be utilized to deliver therapeutic oligonucleotides to modulate events in the nucleus, we evaluated the ability of the aptamer to deliver splice-switching oligonucleotides. We observed that aptamer-splice-switching oligonucleotide chimeras can alter splicing in the nuclei of treated cells and are effective at lower doses than the splice switching oligonucleotides alone. Our results suggest that aptamers can be utilized to deliver oligonucleotides to the nucleus of a wide variety of cancer cells to modulate nuclear events such as RNA splicing

    Oestrogen metabolites in relation to isoprostanes as a measure of oxidative stress

    Full text link
    Objective  Oestradiol (E2) and its metabolites 2-hydroxyoestrone (2-OHE1) and 16Α-hydroxyoestrone (16Α-OHE1) are thought to curtail the greater oxidative stress found in the development and progression of disease conditions including atherosclerosis. We related oestrogen levels to F 2a -isoprostane levels, a biomarker of oxidative stress. Design and participants  Data were obtained from 1647 women, aged 47–57 years, participating in the fifth annual follow-up of the Study of Women's Health Across the Nation (SWAN), a study of the menopausal transition. Measurements  Serum E2 and urinary 2-OHE1 and 16Α-OHE1 concentrations were determined by enzyme-linked immunosorbent assay (ELISA) and urinary F 2a -isoprostanes were measured by enzyme immunoassay (EIA). Results  F 2a -isoprostane concentrations were elevated in women who smoked, a behaviour associated with increased oxidative stress, but not in stages of the natural menopause. Mean F 2a -isoprostane concentrations among pre- and postmenopausal women who smoked were 1082 and 1064 pg/ml, respectively, values double those in pre- (343 pg/ml) and postmenopausal (379 pg/ml) nonsmoking women. 2-OHE1 and F 2a -isoprostane concentrations were positively and highly correlated (partial correlations Ρ Y|X  = 0·44 and Ρ Y|X  = 0·43 in pre- and postmenopausal women, respectively). Similarly, 16Α-OHE1 concentrations were positively and highly correlated with F 2a -isoprostane concentrations (Ρ Y|X  = 0·52 and Ρ Y|X  = 0·59 in pre- and postmenopausal women, respectively). E2 was significantly correlated with F 2a -isoprostanes only in postmenopausal women (Ρ Y|X  = 0·20). Associations were adjusted for age, body mass index (BMI), race/ethnicity, lipids, physical activity level and alcohol consumption. Conclusions  This study does not support the commonly held hypothesis that levels of endogenous E2 or its oestrone metabolites favourably modify oxidative stress by decreasing F2 a -isoprostane levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74943/1/j.1365-2265.2007.03108.x.pd

    Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury

    Get PDF
    Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Abeta accumulation and behavioral impairments in the Tg2576 mice

    Early Induction of Oxidative Stress in Mouse Model of Alzheimer Disease with Reduced Mitochondrial Superoxide Dismutase Activity

    Get PDF
    While oxidative stress has been linked to Alzheimer's disease, the underlying pathophysiological relationship is unclear. To examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial antioxidant superoxide dismutase 2 (Sod2) allele in mutant human amyloid precursor protein (hAPP) transgenic mice. The brains of young (5–7 months of age) and old (25–30 months of age) mice with the four genotypes, wild-type (Sod2+/+), hemizygous Sod2 (Sod2+/−), hAPP/wild-type (Sod2+/+), and hAPP/hemizygous (Sod2+/−) were examined to assess levels of oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1. Sod2 reduction in young hAPP mice resulted in significantly increased oxidative stress in the pyramidal neurons of the hippocampus. Interestingly, while differences resulting from hAPP expression or Sod2 reduction were not apparent in the neurons in old mice, oxidative stress was increased in astrocytes in old, but not young hAPP mice with either Sod2+/+ or Sod2+/−. Our study shows the specific changes in oxidative stress and the causal relationship with the pathological progression of these mice. These results suggest that the early neuronal susceptibility to oxidative stress in the hAPP/Sod2+/− mice may contribute to the pathological and behavioral changes seen in this animal model

    Long-term vitamin E supplementation fails to reduce lipid peroxidation in people at cardiovascular risk: analysis of underlying factors

    Get PDF
    BACKGROUND: Antioxidant supplementation with vitamin E had no effect in the prevention of cardiovascular diseases (CVD) in three recent large, randomized clinical trials. In order to reassess critically the role of vitamin E in CVD prevention, it is important to establish whether these results are related to a lack of antioxidant action. METHODS: We examined the in vivo antioxidant effect of vitamin E (300 mg/day for about three years) in 144 participants in the Primary Prevention Project (females and males, aged ≥ 50 y, with at least one major CV risk factor, but no history of CVD). Urinary 8-epi-PGF(2α) (isoprostane F(2α)-III or 15-F(2t)-isoP), a validated biomarker of lipid peroxidation, was measured by mass spectrometry. RESULTS: Urinary excretion of 8-epi-PGF(2α) [pg/mg creatinine, median (range)] was 141 (67–498) in treated and 148 (76–561) in untreated subjects (p = 0.10). Taking into account possible confounding variables, multiple regression analysis confirmed that vitamin E had no significant effect on this biomarker. Levels of 8-epi-PGF(2α) were in the normal range for most subjects, except smokers and those with uncontrolled blood pressure or hyperglycemia. CONCLUSIONS: Prolonged vitamin E supplementation did not reduce lipid peroxidation in subjects with major cardiovascular risk factors. The observation that the rate of lipid peroxidation was near normal in a large proportion of subjects may help explain why vitamin E was not effective as an antioxidant in the PPP study and was ineffective for CVD prevention in large scale trials
    • …
    corecore