153 research outputs found

    The Physics of Mind-Matter Interaction at a Distance

    Get PDF
    The aim of this work is identification and localisation of the interaction between mind and matter, specifically with respect to random number generators, and identification of the type of energy that can alter the degree of randomness of bit-string outputs of these electronic devices. Regarding localisation of the mind/random-number- generator interaction, we believe it occurs through the production of electron+gap pairs in the inversely polarised P-N junction of the Zener diode that is used as a white noise generator, with resulting peaks of non-random current. Conversely, regarding the type of energy acting on the analogue signal, we believe it is made of photons of wavelength ranging from 0.2 to 1.1 \u3bcm, each therefore carrying an energy of between 6.2 and 1.14 eV. The most controversial part concerns the means by which the human mind can produce this type of energy from a distance to act directly on a chosen target, in that it is not possible for it to have been emitted by either the body or brain as biophotons

    EEG correlates of social interaction at distance

    Get PDF
    This study investigated EEG correlates of social interaction at distance between twenty-five pairs of participants who were not connected by any traditional channels of communication. Each session involved the application of 128 stimulations separated by intervals of random duration ranging from 4 to 6 seconds. One of the pair received a one-second stimulation from a light signal produced by an arrangement of red LEDs, and a simultaneous 500 Hz sinusoidal audio signal of the same length. The other member of the pair sat in an isolated sound-proof room, such that any sensory interaction between the pair was impossible. An analysis of the Event-Related Potentials associated with sensory stimulation using traditional averaging methods showed a distinct peak at approximately 300 ms, but only in the EEG activity of subjects who were directly stimulated. However, when a new algorithm was applied to the EEG activity based on the correlation between signals from all active electrodes, a weak but robust response was also detected in the EEG activity of the passive member of the pair, particularly within 9 – 10 Hz in the Alpha range. Using the Bootstrap method and the Monte Carlo emulation, this signal was found to be statistically significant

    Redox regulation of STAT1 and STAT3 signaling

    Get PDF
    STAT1 and STAT3 are nuclear transcription factors that regulate genes involved in cell cycle, cell survival and immune response. The cross-talk between these signaling pathways determines how cells integrate the environmental signals received ultimately translating them in transcriptional regulation of specific sets of genes. Despite being activated downstream of common cytokine and growth factors, STAT1 and STAT3 play essentially antagonistic roles and the disruption of their balance directs cells from survival to apoptotic cell death or from inflammatory to anti-inflammatory responses. Different mechanisms are proposed to explain this yin-yang relationship. Considering the redox aspect of STATs proteins, this review attempts to summarize the current knowledge of redox regulation of STAT1 and STAT3 signaling focusing the attention on the post-translational modifications that affect their activity

    A Pilot Study of Distant `Mind-Matter' Interaction with Digital Photography

    Get PDF
    This pilot study explored the possibility of (a) mentally producing, at a geographical distance, predefined images on digital sensors within modern professional-grade photographic equipment, and with (b) sufficient resolution to be objectively verified via a Structural Similarity Index by specialized software for pattern recognition. Three participants, expert in distant ‘mind-matter interaction’ techniques, completed a total of 49 trials. In 6 out of 49 trials (12.2%), the Structural Similarity Index of the ‘target’ image, chosen by the participant for the distant mental influence trial on the camera’s sensor, was greater than that obtained when the target was different. These preliminary results suggest the possibility of using modern cameras to study the putative effects of distant ‘mind-matter’ interactions

    Natural sesquiterpene lactones enhance chemosensitivity of tumor cells through redox regulation of STAT3 signaling

    Get PDF
    STAT3 is a nuclear transcription factor that regulates genes involved in cell cycle, cell survival, and immune response. Although STAT3 activation drives cells to physiological response, its deregulation is often associated with the development and progression of many solid and hematological tumors as well as with drug resistance. STAT3 is a redox-sensitive protein, and its activation state is related to intracellular GSH levels. Under oxidative conditions, STAT3 activity is regulated by S-glutathionylation, a reversible posttranslational modification of cysteine residues. Compounds able to suppress STAT3 activation and, on the other hand, to modulate intracellular redox homeostasis may potentially improve cancer treatment outcome. Nowadays, about 35% of commercial drugs are natural compounds that derive from plant extracts used in phytotherapy and traditional medicine. Sesquiterpene lactones are an interesting chemical group of plant-derived compounds often employed in traditional medicine against inflammation and cancer. This review focuses on sesquiterpene lactones able to downmodulate STAT3 signaling leading to an antitumor effect and correlates the anti-STAT3 activity with their ability to decrease GSH levels in cancer cells. These properties make them lead compounds for the development of a new therapeutic strategy for cancer treatment

    Immunoprecipitation methods to identify S-glutathionylation in target proteins

    Get PDF
    S-glutathionylation is a reversible post-translational modification of proteins that generate a mixed disulfide between glutathione to thiolate anion of cysteine residues in target proteins. In the last ten years, S-glutathionylation has been extensively studied since it represents the cellular response to oxidative stress, in physiological as well as pathological conditions. This modification may be a protective mechanism from irreversible oxidative damage and, on the other hand, may modulate protein folding and function. Due to the importance of S-glutathionylation in cellular redox signaling, various methods have been developed to identify S-gluthationylated proteins. Herein, we describe two easy methods to recognized S-glutathionylation of a target protein after oxidative stress in cellular extracts based on different immunoprecipitation procedures. The immunoprecipitation assay allows the capture of one glutathionylated protein using a specific antibody that binds to the target protein. The presence of S-glutathionylation in the immunoprecipitated protein is identified using anti-glutathione antibody. The second type of approach is based on the detection of the glutathionylated protein with biotin/streptavidin technique. After different steps of protection of non-oxidized thiolic groups and reduction of S-glutathionylated groups, the newly-formed protein free-thiols are labeled with biotin-GSH. The modified protein can be isolate with streptavidin-beads and recognized using an antibody against target protein. \u2022S-glutathionylation is a reversible post-translational modification of proteins that recently has been emerged as important signaling in the redox regulation of protein function.\u2022Both methods to identify glutathionylated proteins are economic, easy and do not require particular equipment.\u2022The setups of both methods guarantee high reproducibility

    ChAMBRe \u2013 the development of an atmosferic simulation chamber for bioaerosol studies and aerosol optical properties investigation

    Get PDF
    Environmental simulation chambers are small to largescale facilities where atmospheric conditions can be monitored in real-time under control to reproduce realistic environments and to study interactions among their constituents. Up to now, they have been used mainly to study chemical and photochemical processes that occur in the atmosphere, but the high versatility of these facilities allows for a wider application covering all fields of atmospheric aerosol science. ChAMBRe (Chamber for Aerosol Modelling and Bioaerosol Research) is the stainless steel atmospheric simulation chamber (volume approximately 3 m3, see Figure 1) recently installed at the National Institute of Nuclear Physics in Genoa (INFN-Genova) in collaboration with the Environmental Physics Laboratory at the Physics Department of Genoa University (www.labfisa.ge.infn.it). The scientific activities at ChAMBRe focus on the following topics: 1) Bioaerosol properties A strong improvement in the understanding of bioaerosol behaviour can be provided by atmospheric chamber experiments, that allow for a scientific intermediate approach between \u201cin vitro\u201d and \u201cin vivo\u201d analysis. Aerosol with realistic composition, including living micro-organisms, can be injected in artificial environments with controlled physical and chemical parameters and then accurately analyzed. In particular, a systematic approach can be used for a better description of micro-organisms viability, of colonies growing modulation and other issues relevant to their spread and their pathogenicity. Very promising results in this direction were obtained by the authors at the CESAM facility at CNRS-LISA (Brotto et al. 2015), while similar results were obtained nearly at the same time at AIDA chamber at KIT (Amato et al. 2015). ChAMBRe experiments are carrying on this path to contribute in getting a deeper understanding of the still unclear mechanisms that control the evolution of bioaerosols in atmosphere and in particular of their bacterial components. 2) Aerosol optical properties \u2013 methodologies and instruments testing The instrumental development efforts at the Environmental Physics Laboratory of the University of Genoa, recently resulted in a new Multi Wavelength Absorbance Analyser (Massab\uf2 et al. 2015) which measure the light absorption on aerosol loaded filters at five wavelengths from UV (absorption bands of organic compounds, mineral dust) to near infrared (carbon soot,\u2026). Furthermore, a new data reduction methodology has been introduced to disentangle the concentration of Black and Brown carbon in atmospheric aerosol, demonstrating the need to mitigate not only exhaust but also non-exhaust emissions, as a potentially important source of PM10. The atmospheric chamber is an effective tool to produce known aerosol mixtures and to test the performance of the optical technology. Actually, there is an on-going collaboration with the CNRS-LISA team working at CESAM following that procedure that will be soon replicated at ChAMBRe facility. ChAMBRe has recently joined the Eurochamp consortium, the European atmospheric chamber facilities network. The network activities have been included in an infrastructure-oriented research project proposal that is going to be submitted within March 2016 to the H2020-INFRAIA call within EU Horizon 2020 Programme. We would like to acknowledge prof. J.F. Doussin and LISA laboratories (http://www.lisa.univ-paris12.fr/en) for providing us part of the chamber structure and for the very useful and fruitful technical discussions
    • …
    corecore