73 research outputs found

    Non-linear fe modelling of seismic pounding and damped-mitigating interconnection between a r/c tower and a masonry church

    Get PDF
    The finite element analysis of pounding represents one of the most critical issues for the assessment of the seismic performance of R/C structures built at poor distance from adjacent buildings. The effects of pounding can be particularly severe in slender R/C heritage structures, including civic or bell towers. An emblematic case study falling in this class of structures, i.e. a monumental R/C bell tower constructed in the early 1960s in Florence, is analyzed in this paper. Pounding collisions are simulated with a multi-link viscoelastic contact model originally implemented in this study. The results of the non-linear dynamic enquiry carried out with this model show that pounding affects the seismic response of the bell tower and the adjacent church as early as an input seismic action scaled at the amplitude of the normative basic design earthquake level. A retrofit hypothesis to prevent pounding is then proposed, which consists in linking the two structures by means of a pair of fluid-viscous dissipaters. Thanks to the supplemental damping action produced by these devices, the impacts are totally annulled, bringing the structural members of the tower to safe levels

    Building deformation assessment by means of Persistent Scatterer Interferometry analysis on a landslide-affected area: the Volterra (Italy) case study

    Get PDF
    In recent years, space-borne InSAR (interferometric synthetic aperture radar) techniques have shown their capabilities to provide precise measurements of Earth surface displacements for monitoring natural processes. Landslides threaten human lives and structures, especially in urbanized areas, where the density of elements at risk sensitive to ground movements is high. The methodology described in this paper aims at detecting terrain motions and building deformations at the local scale, by means of satellite radar data combined with in situ validation campaigns. The proposed approach consists of deriving maximum settlement directions of the investigated buildings from displacement data revealed by radar measurements and then in the cross-comparison of these values with background geological data, constructive features and on-field evidence. This validation permits better understanding whether or not the detected movements correspond to visible and effective damages to buildings. The method has been applied to the southwestern sector of Volterra (Tuscany region, Italy), which is a landslide-affected and partially urbanized area, through the use of COSMO-SkyMed satellite images as input data. Moreover, we discuss issues and possible misinterpretations when dealing with PSI (Persistent Scatterer Interferometry) data referring to single manufactures and the consequent difficulty of attributing the motion rate to ground displacements, rather than to structural failures

    Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using InSAR Persistent Scatterers: two decades of change in Florence, Italy

    Get PDF
    Urban expansion and city transformation are increasing reality across the world. Now more than ever it is essential to understand and map at the appropriate scale the processes happening along the verticality and horizontality of cities, to gather robust evidence underpinning strategies for sustainable management of the built environment. This paper explores how established techniques of Persistent Scatterer Interferometry (PSI) can be shaped into a novel dedicated procedure to detect vertical and horizontal urban dynamics including: use and re-use of urban space (new building construction, intentional demolition, renovation projects); exploitation of groundwater resources (induced land subsidence); interactions between new foundations, superficial deposits and bedrock geology (settlement of recent buildings); ground and slope instability affecting settled buildings; susceptibility of heritage assets to structural damages; baseline characterisation prior to planned major infrastructure construction (tunnelling and transportation networks). Florence, central Italy, is used as a demonstration site. This city includes UNESCO World Heritage List historic centre, 20th-century residential, industrial and peri-urban quarters, and is currently in transition to metropolitan area of over 1 million of inhabitants. Velocity decomposition maps were generated based on millimetre-precise estimates of surface displacements retrieved from PSI processing of the full archives of satellite C-band radar images, including 79 ERS-1/2 descending (1992–2000), 70 ENVISAT ASAR ascending and descending (2003–2010) and 101 RADARSAT-1 ascending and descending (2003–2007). 12 macropatterns and 84 micropatterns in the final map of alert areas highlight a dualism which reflects the physical and urban geography of Florence. North-western and south-western quarters show hot spots of new building construction and regeneration projects for residential, business and tertiary service purposes, alongside issues due to groundwater exploitation and induced land subsidence up to 30–40 mm/yr. Local interactions with underlying geology and natural slope instability processes predominate in the southern and north-eastern sectors. At local scale, stable condition was found for the heritage assets and buildings located along the tracks of the planned subway railway and tramway, with motion rates averagely within ±1.5 mm/yr and localised deformation only up to −3.5 mm/yr. Structural assessment based on future PSI monitoring campaign will benefit of this baseline characterisation

    The choice of μ-vinyliminium ligand substituents is key to optimize the antiproliferative activity of related diiron complexes

    Get PDF
    Diiron vinyliminium complexes constitute a large family of organometallics displaying a promising anticancer potential. The complexes [Fe2Cp2(CO)(mu-CO){mu-eta(1):eta(3)-C(R-3)C(R-4)CN(R-1)(R-2)}]CF3SO3 (2a-c, 4a-d) were synthesized, assessed for their behavior in aqueous solutions (D2O solubility, Log P-ow, stability in D2O/Me2SO-d(6) mixture at 37 degrees C over 48 h) and investigated for their antiproliferative activity against A2780 and A2780cisR ovarian cancer cell lines and the nontumoral one Balb/3T3 clone A31. Cytotoxicity data collected for 50 vinyliminium complexes were correlated with the structural properties (i.e. the different R-1-R-4 substituents) using the partial least squares methodology. A clear positive correlation emerged between the octanol-water partition coefficient and the relative antiproliferative activity on ovarian cancer cell lines, both of which appear as uncorrelated to the cancer cell selectivity. However, the different effects played by the R-1-R-4 substituents allow tracing guidelines for the development of novel, more effective compounds. Based on these results, three additional complexes (4p-r) were designed, synthesized and biologically investigated, revealing their ability to hamper thioredoxin reductase enzyme and to induce cancer cell production of reactive oxygen species
    • …
    corecore