1,793 research outputs found

    Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Full text link
    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEGII experiment, at PSI, Switzerland, investigates the forbidden decay μ+→e+γ\mu^+ \to \mathrm{e}^+ \gamma. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek≥0.5 MeVE_k\geq 0.5 ~MeV) is present in the experimental hall produced along the beamline and in the hall itself. We present the effects of neutron fluxes comparable to the MEGII expected doses on several Silicon PhotoMulitpliers (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEGII experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.Comment: 9 pages, 6 figures. Proceedings from Instrumentation for colliding Beam Physics (INSTR-17) 27-02-2017/03-03-2017 Novosibirsk (R

    Noncommutative Black Holes and the Singularity Problem

    Full text link
    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.Comment: Based on a talk by CB at ERE2010, Granada, Spain, 6th-10th September 201

    Interpreting Rock-Cut Grave Cemeteries: the early medieval necropolis and enclosure of São Gens, Portugal

    Get PDF
    EXCAVATION AT SÃO GENS (Guarda district) in central Portugal has revealed an early medieval rock-cut grave cemetery and settlement, along with Roman and prehistoric evidence. The site presents an exceptionally rich palimpsest of archaeological monuments. This paper reviews the findings and seeks to address the problem of interpreting rock-cut grave cemeteries, by describing a spatial analytical methodology that draws on comparisons with early medieval cemeteries in England, as a means of enhancing the information deficit of such necropolises. In the light of these analyses, an interpretation of the São Gens site is offered in conclusion

    Modeling the HFC 134a Flow Through Capillary Tubes Using a Two-Fluid Model

    Get PDF

    Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress\u2014Related Neurodegeneration

    Get PDF
    Neurodegenerative diseases include a variety of pathologies such as Alzheimer\u2019s disease, Parkinson\u2019s disease, Huntington\u2019s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer\u2019s and Parkinson\u2019s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorder
    • …
    corecore