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MODELING THE HFC 134a FLOW THROUGH CAPILLARY TUBES USING A 
TWO-FLillD MODEL 

A L. Seixlack, A. T. Prata and C. Melo 

Department of Mechanical Engineering 
Federal University of Santa Catarina 

88040-900 - Florian6polis, SC - Brazil 

ABSTRACT 

This work presents a numerical model to simulate the HFC-134a flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The capillary tube is considered straight and horizontal; the flow is taken as onedimensional, steady and adiabatic. A two-fluid model, involving five conservation equations and considering the hydrodynamic and thermal nonequilibrium between the liquid and vapor phases, is applied to the two-phase flow region. Computed pressure profiles and mass flow rates obtained from the model are compared with experimental data. It is shown that the present model yields better results than the commonly employed homogeneous model. 

INTRODUCTION 

Due to its major influence in refrigeration equipments, there has been a great amount of literature related to capillarytube expansion devices. The flow in such a device offers several challenges for a phenomenological description: turbulence, phase-change, sonic and metastability effects all occur in the flow through capillary tubes. Some representative contributions on both analysis and experiments related to such flow can be found in [1] and [2]. 

A literature review indicates that all works that have been reported assume homogeneous flow in modeling capillary tubes. In the homogeneous flow model no distinction is made between the liquid and vapor phases and the governing equations are written for a pseudo fluid having properties whose values are mean values for the flow (3]; velocity and temperature for both phases are assumed to be equal. In this respect several features of the phenomenon cannot be disclosed through the homogeneous flow model. 

The present work presents, for the first time, a numerical analysis of the HFC 134a flow through capillary tubes using a two-fluid model. For validation, results from the model are compared with the experiments performed in [2]. 

PROBLEM FORMULATION 

In the present model the flow along the capillary tube is divided in two regions: subcooled liquid and two-phase region. The tube is taken to be straight with constant inner diameter and the flow is assumed to be one-dimensional, steady and adiabatic. Additionally, the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. 

Liquid flow region: 

In this region the flow is fully developed and pressure drop is due to friction; also, because of the adiabatic assumption, temperature can only be changed due to viscous dissipation effects. The flow is then governed by the momentum and energy conservation equations, 

dp = _ fLG
2
VL 

dz ZD 
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dT =- VL dp 
dz cv dz 

(1) 



where z is the axial location along the tube, pis pressure, fL is the single-phase friction factor, G is the volumetric mass flow 

rate, VL is the velocity of the liquid, D is the tube inner diameter, T is temperature and Cv is the specific heat at constant 

volume. 

Two-phase flow region: 

As the refrigerant flows along the capillary tube, friction causes a decrease in pressure and eventually saturation is 

reached. After that, the decrease in pressure is associated to liquid changing into vapor, and the two-phase flow is then 

established. The equations for the two-phase region are: 

(i) Overall Mass Conservation: 

(2) 

where a is the void fraction, p is the density and V is the phase velocity; the subscripts L and V refer, respectively, to the 

liquid and vapor phases. 

(ii) Momentum Conservation for Liquid Phase: 

d[(l- a)pL V£] = -(1- a) dp- 'R __ + F - V. ~[ap V ] 
dz dz ~WL LV ' dz v v 

(3) 

where FWL is the friction force per unit volume between the liquid phase and the tube wall; FLv is the interfacial force per unit 

volume between liquid and vapor and V; is the interfacial velocity given by (V v+ V L)/2. 

(iii) Momentum Conservation for Vapor Phase: 

(4) 

where Fwv is the friction force per unit volume between the vapor phase and the tube wall. 

(iv) Overall Energy Conservation: 

(5) 

where his the specific enthalpy of either the liquid (subscript L) or the vapor phase (subscript V). 

(v) Energy Conservation for Vapor Phase: 

- apvVv hy +- =q; +-(Vv- Vd-[apvVv] d [ ( v~)] 1 2 2 d 
dz 2 2 dz 

(6) 

where q; is the heat transfer per unit volume between the liquid and vapor phases due to both temperature difference and phase 

change. 
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The two-phase model represent a set of five unknowns VL, Vv, p, a and hL (or TL)- The thermodynamic properties Pv 
pv, a and hv were calculated using curves adjusted from data obtained from [4]. To closure the models, constitutive 
equations for fL, FWL, Fwv, FLv, and q; are required and will be explored next. 

Constitutive equations 

According to [5], the flow along capillary tubes can vary from bubble to annular flow. In the present work it is assumed 
bubble flow up to void fractions of 0.3, churn flow from void fractions between 0.3 and 0.8, and above 0.8 the flow is taken as 
annular. For bubble and annular flows constitutive equations are somehow available in the literature. This is not the case for 
chum flow, and in the present work the constitutive equations for such regime were obtained from interpolation between 
bubble and annular flow regimes. 

(i) Single phase friction factor, fL 

It has been shown in [2], that Churchill's equation, [6], yields good agreement with experiments, and, therefore, it will 
be employed here. 

(ii) Friction between tube wall and fluid, Fwv Fwv 

For the flow regimes considered here, there is no flow of vapor adjacent to the tube wall and, therefore, Fwv is taken as 
zero. The friction force between the liquid phase and the tube surface is obtained from [7]. In this model, FWL, is given by, 

(7) 

where AWL and BWL are, respectively, the contact area and the friction coefficient. For bubble and chum flow AWL ==4(1-a)/D, 
whereas for annular flow AWL==4/D. The friction coefficient for all three flow regimes is given by BWL=fLfJLVJ8, where fL is 
obtained from Churchill's equation, [6]. 

(iii) Interfacial force, FLv 

In the present work the interfacial force is modeled considering two effects: virtual mass and interphase friction. The 
expression for FLv is then given by, 

(8) 

where (f. is the interfacial friction factor calculated using the correlations given in [8] and [9] for the bubble and annular flow 
regimes, respectively. The virtual mass coefficient is obtained from [8] as Cn.v=0.5apL· 

(iv) Interfacial beat transfer, qi 

The heat transfer between the phases are due to both temperature difference and phase change and can be expressed as, 

(9) 

where a; is the interfacial area and h; is the interfacial heat transfer coefficient. For bubble flow regime a;=6a/d where d is the 
bubble diameter obtained from d=(6a/:rcN)l!3 in which N is the density of vapor nucleus in the fluid (N=1011 nucleus/m3

, [10]); 
for annular flow regime aj=4a05/D. The interfacial heat transfer coefficient for the bubble flow regime is obtained using 
Whitaker's correlation [11] with the Reynolds number defined as PL V Ld/!JL. For the annular regime hi is obtained from the 
Dittus-Boelter correlation [12] using Da05 as the characteristic diameter. 
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As mentioned before, all information related to the chum flow regime was obtained through interpolation between 

bubble and annular regimes. For the interfacial heat transfer coefficient the interpolation of a heat transfer parameter, as 

suggested by [13], allowed a smooth transition between the phases and eliminated some instabilities otherwise observed in the 

numerical solution. 

Boundary O:mditions 

At the entrance of the capillary tube, z=O, the pressure is that measured at the wall of the capillary suction line minus a 

pressure drop (friction factor coefficient, K=0.8) associated with the entrance loss [14]. The temperature is obtained from the 

saturation temperature at the given pressure minus the degree of subcooling. 

At the beginning of the two-phase regime, non-slipping is assumed between the phases and VL=Vv; the pressure is that 

corresponding to saturation at the liquid temperature, and the void fraction is obtained from the vapor nucleus density N, 

assuming that the bubbles are spherical, 

a= Nm:l~ I 6 (10) 

where d0 is the bubble initial diameter (d0 =2.5 x 10"5 m) taken from [10]. Along the bubble flow regime, the vapor nucleus 

density is kept the same and the bubble diameter is obtained from the void fraction using equation (10). The bubble diameter 

is required in evaluating the interfacial area a; needed to calculate the heat transfer between the phases. 

Choked flow is assumed at the tube exit and dp/dz is taken as minus infinity according to [15]. Numerically this 

condition is implemented evaluating dp/dz at each location along the tube until it becomes positive indicating that the 

maximum absolute value has been reached. 

SOLUTION METHODOLOGY 

The flow in consideration is parabolic and the solution of the governing equations is obtained using a fourth order 

Runge-Kutta method [16]. For a given mass flow rate the solution yields the tube length or, given the tube length, the solution 

yields the mass flow rate. In the first case the numerical solution is performed only once from the inlet to the outlet of the 

tube and the tube length is such that corresponds to choked flow. When the tube length is known an iteration procedure is 

required until the mass flow rate obtained is such that choked flow coincides with the outlet of the capillary tube. 

RESULTS AND DISCUSSIONS 

Comparisons between the results obtained from the numerical model and the experimental data of [2] are presented in 

Figures 1 and 2 for two situations. As can be seen from the figures the two-fluid model yields a better agreement with the 

experiments than the homogeneous model. In Figure 1 the maximum deviation from the experimental values was 6% for the 

two-fluid and 17% for the homogeneous model. In Figure 2 the deviations are 4% and 7% for the two-fluid model and the 

homogeneous model, respectively. 

Pressure profiles along the capillary tube are explored in Figures 3 and 4. The comparisons between computation and 

experiments are performed in two different ways. First the mass flow rate and the operating conditions are kept constant and 

the tube length is obtained from the two-fluid model (dotted line) and the homogeneous model (dashed line). Alternatively, 

the tube length can be provided and the mass flow rate can be calculated from the two-fluid model (solid line). The two-fluid 

model yielded better results than the homogeneous model for the prediction of the tube length, mass flow rate as well as for 

the pressure distribution. 

Numerical results for the void fraction along the tube are shown in Figure 5, and in Figure 6 the local variation of the 

vapor quality is explored. It should be noted that near the tube exit the void fraction is very close to unity. 
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Fig. 1 - Comparison between measured and 
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Fig. 2 - Comparison between measured and 
predicted mass flow rate for capillary tube B. 
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Results for the phase velocities and temperatures have shown that the departures from equilibrium (both hydrodynamic 
and thermodynamic) are small. The maximum difference between liquid and vapor velocities occurred at the tube exit and 
was 2.4 %. Furthermore, the maximum temperature difference between the phases was 7 °C. The main outcome from this 
finding is that the refrigerant flow through capillary tubes can be considered as homogeneous. However, the better agreement 
with the experiments accorded to the two-fluid model is due to a better representation of the flow through the appropriate 
constitutive equations, and, at the moment, it appears that only through the two-fluid model the important features of the flow 
can be incorporated into the analysis. 

CONCLUSIONS 

A two-fluid model is employed for the first time to represent the HFC-134a flow through capillary tubes. Five equations 
are needed to solve for the velocity of both phases, pressure, void fraction and enthalpy of the liquid phase. From that and the 
thermodynamic relationship all other properties are determined. The set of five differential equations was solved using a 
fourth order Runge-Kutta algorithm. 

Comparisons between the two-fluid model and experimental results indicated that the present model yields better results 
than the commonly adopted homogeneous model. These better results are not due to the nonequilibrium between the phase 
velocities and temperatures, which were both very small, but due to a better representation of the flow through more accurate 
constitutive equations afforded by the two-fluid model. 
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