14 research outputs found

    Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

    Get PDF
    In this chapter, by using ab-initio molecular dynamics, we introduce the latest simulation results on two materials for flash memory devices: Ge2Sb2Te5 and Ge-Se-Cu-Ag. This chapter is a review of our previous work including some of our published figures and text in Cai et al. (2010) and Prasai & Drabold (2011) and also includes several new results.Comment: 24 pages, 20 figures. This is a chapter submitted for the book under the working title "Flash Memory" (to be published by Intech ISBN 978-953-307-272-2

    3D Atomic Arrangement at Functional Interfaces Inside Nanoparticles by Resonant High-Energy X‑ray Diffraction

    No full text
    With current science and technology moving rapidly into smaller scales, nanometer-sized materials, often referred to as NPs, are produced in increasing numbers and explored for numerous useful applications. Evidence is mounting, however, that useful properties of NPs can be improved further and even new NP functionality achieved by not only controlling the NP size and shape but also interfacing chemically or structurally distinct entities into single, so-called “composite” NPs. A typical example is core–shell NPs wherein the synergy of distinct atoms at the core\shell interface endows the NPs with otherwise unachievable functionality. However, though advantageous, the concept of functional interfaces inside NPs is still pursued largely by trial-and-error. That is because it is difficut to assess the interfaces precisely at the atomic level using traditional experimental techniques and, hence, difficult to take control of. Using the core\shell interface in less than 10 nm in size Ru core–Pt shells NPs as an example, we demonstrate that precise knowledge of the 3D atomic arrangement at functional interfaces inside NPs can be obtained by resonant high-energy X-ray diffraction (XRD) coupled to element-specific atomic pair distribution function (PDF) analysis. On the basis of the unique structure knowledge obtained, we scrutinize the still-debatable influence of core\shell interface on the catalytic functionality of Ru core–Pt shell NPs, thus evidencing the usefulness of this nontraditional technique for practical applications

    Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

    No full text
    DOE-BES [DE-SC0006877]; DOE [AC02-06CH11357]; DOE's Office of Biological and Environmental ResearchAlloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly active and stable catalysts. However, the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable maximal catalytic activity at Pd:Ni ratio of similar to 50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies

    Composition–Structure–Activity Relationships for Palladium-Alloyed Nanocatalysts in Oxygen Reduction Reaction: An Ex-Situ/In-Situ High Energy X‑ray Diffraction Study

    No full text
    Understanding how the composition and atomic-scale structure of a nanocatalyst changes when it is operated under realistic oxygen reduction reaction (ORR) conditions is essential for enabling the design and preparation of active and robust catalysts in proton exchange membrane fuel cells (PEMFCs). This report describes a study of palladium-alloyed electrocatalysts (PdNi) with different bimetallic compositions, aiming at establishing the relationship between catalyst’s composition, atomic structure, and activity for ORR taking place at the cathode of an operating PEMFC. Ex-situ and in-situ synchrotron high-energy X-ray diffraction (HE-XRD) coupled to atomic pair distribution function (PDF) analysis are employed to probe the structural evolution of the catalysts under PEMFC operation conditions. The study reveals an intriguing composition–activity synergy manifested by its strong dependence on the fuel cell operation induced leaching process of base metals from the catalysts. In particular, the synergy sustains during electrochemical potential cycling in the ORR operation potential window. The alloy with Pd:Ni ratio of 50:50 atomic ratio is shown to exhibit the highest possible surface Pd–Pd and Pd–Ni coordination numbers, near which an activity is observed. The analysis of the Ni-leaching process in terms of atomic-scale structure evolution sheds further light on the activity–composition–structure correlation. The results not only show a sustainable alloy characteristic upon leaching of Ni consistent with catalytic synergy but also reveal a persistent fluctuation pattern of interatomic distances along with an atomic-level reconstruction under the ORR and fuel cell operation conditions. The understanding of this type of interatomic distance fluctuation in the catalysts in correlation with the base metal leaching and realloying mechanisms under the electrocatalytic operation conditions may have important implications in the design and preparation of catalysts with controlled activity and stability

    Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    No full text
    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level. Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy compositions. Our findings are corroborated by DFT calculations based on a refined version of d-band center theory on the catalytic properties of late transition metals and alloys. We discuss opportunities for improving the accuracy of current theory on surface-controlled properties of metallic NPs through augmenting the theory with surface structure data obtained by resonant XRD

    Composition–Structure–Activity Correlation of Platinum–Ruthenium Nanoalloy Catalysts for Ethanol Oxidation Reaction

    No full text
    Understanding the evolution of the composition and atomic structure of nanoalloy catalysts in the ethanol oxidation reaction (EOR) is essential for the design of active and robust catalysts for direct ethanol fuel cells. This article describes a study of carbon-supported platinum–ruthenium electrocatalysts (PtRu/C) with different bimetallic compositions and their activities in the EOR, an important anode reaction in direct ethanol fuel cells (DEFCs). The study focused on establishing the relationship between the catalyst’s composition, atomic structure, and catalytic activity for the EOR. Ex situ and in situ synchrotron high-energy X-ray diffraction (HE-XRD) experiments coupled with atomic pair distribution function (PDF) analysis and in situ energy-dispersive X-ray (EDX) analysis were employed to probe the composition and structural evolution of the catalysts during the in situ EOR inside a membrane electrode assembly (MEA) in the fuel cell. The results revealed an intriguing composition–structure–activity relationship for the PtRu electrocatalysts under EOR experimental conditions. In particular, the alloy with a Pt/Ru ratio of ∌50:50 was found to exhibit a maximum EOR activity as a function of the bimetallic composition. This composition–activity relationship coincides with the relationship between the Pt interatomic distances and coordination numbers and the bimetallic composition. Notably, the catalytic activities of the PtRu electrocatalysts showed a significant improvement during the EOR, which can be related to atomic-level structural changes in the nanoalloys occurring during the EOR, as indicated by in situ HE-XRD/PDF/EDX data. The findings shed some new light on the mechanism of the ethanol oxidation reaction over bimetallic alloy nanocatalysts, which is important for the rational design and synthesis of active nanoalloy catalysts for DEFCs
    corecore