14 research outputs found

    Structure-Function Analysis of STRUBBELIG, an Arabidopsis Atypical Receptor-Like Kinase Involved in Tissue Morphogenesis

    Get PDF
    Tissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed. The phenotypes of 20 EMS and T-DNA-induced strubbelig alleles were assessed and homology modeling was applied to rationalize their possible effects on STRUBBELIG protein structure. The analysis was complemented by phenotypic, cell biological, and pharmacological investigations of a strubbelig null allele carrying genomic rescue constructs encoding fusions between various mutated STRUBBELIG proteins and GFP. The results indicate that STRUBBELIG accepts quite some sequence variation, reveal the biological importance for the STRUBBELIG N-capping domain, and reinforce the notion that kinase activity is not essential for its function in vivo. Furthermore, individual protein domains of STRUBBELIG cannot be related to specific STRUBBELIG-dependent biological processes suggesting that process specificity is mediated by factors acting together with or downstream of STRUBBELIG. In addition, the evidence indicates that biogenesis of a functional STRUBBELIG receptor is subject to endoplasmic reticulum-mediated quality control, and that an MG132-sensitive process regulates its stability. Finally, STRUBBELIG and the receptor-like kinase gene ERECTA interact synergistically in the control of internode length. The data provide genetic and molecular insight into how STRUBBELIG regulates intercellular communication in tissue morphogenesis

    DETORQUEO, QUIRKY, and ZERZAUST Represent Novel Components Involved in Organ Development Mediated by the Receptor-Like Kinase STRUBBELIG in Arabidopsis thaliana

    Get PDF
    Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C2 domains, suggesting that QKY may function in membrane trafficking in a Ca2+-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB

    Asymmetric redundancy of ZERZAUST and ZERZAUST HOMOLOG in different accessions of arabidopsis thaliana

    No full text
    Divergence among duplicate genes is one of the important sources of evolutionary innovation. But, the contribution of duplicate divergence to variation in Arabidopsis accessions is sparsely known. Recently, we studied the role of a cell wall localized protein, ZERZAUST (ZET), in Landsberg erecta (Ler) accession, lack of which results in aberrant plant morphology. Here, we present the study of ZET in Columbia (Col) accession, which not only showed differential expression patterns in comparison to Ler, but also revealed its close homolog, ZERZAUST HOMOLOG (ZETH). Although, genetic analysis implied redundancy, expression analysis revealed divergence, with ZETH showing minimal expression in both Col and Ler. In addition, ZETH shows relatively higher expression levels in Col compared to Ler. Our data also reveal compensatory up-regulation of ZETH in Col, but not in Ler, implying it is perhaps dispensable in Ler. However, a novel CRISPR/Cas9-induced zeth allele confirmed that ZETH has residual activity in Ler. Finally, the synergistic interaction of the receptor-like kinase gene, ERECTA with ZET in ameliorating morphological defects suggests crucial role of modifiers on plant phenotype. The results provide genetic evidence for accession-specific differences in compensation mechanism and asymmetric gene contribution. Thus, our work reveals a novel example for how weakly expressed homologs contribute to diversity among accessions.</p

    Evolution, Initiation, and Diversity in Early Plant Embryogenesis

    No full text
    Weijers and colleagues present a review article discussing advances in the study of early plant embryogenesis. The piece examines both Arabidopsis embryogenesis as well as the relevance of findings made in Arabidopsis to other plants throughout evolution.</p

    ANGUSTIFOLIA is a central component of tissue morphogenesis mediated by the atypical receptor-like kinase STRUBBELIG

    Get PDF
    BACKGROUND: During plant tissue morphogenesis cells have to coordinate their behavior to allow the generation of the size, shape and cellular patterns that distinguish an organ. Despite impressive progress the underlying signaling pathways remain largely unexplored. In Arabidopsis thaliana, the atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is involved in signal transduction in several developmental processes including the formation of carpels, petals, ovules and root hair patterning. The three STRUBBELIG-LIKE MUTANT (SLM) genes DETORQUEO (DOQ), QUIRKY (QKY) and ZERZAUST (ZET) are considered central elements of SUB-mediated signal transduction pathways as corresponding mutants share most phenotypic aspects with sub mutants. RESULTS: Here we show that DOQ corresponds to the previously identified ANGUSTIFOLIA gene. The genetic analysis revealed that the doq-1 mutant exhibits all additional mutant phenotypes and conversely that other an alleles show the slm phenotypes. We further provide evidence that SUB and AN physically interact and that AN is not required for subcellular localization of SUB. CONCLUSIONS: Our data suggest that AN is involved in SUB signal transduction pathways. In addition, they reveal previously unreported functions of AN in several biological processes, such as ovule development, cell morphogenesis in floral meristems, and root hair patterning. Finally, SUB and AN may directly interact at the plasma membrane to mediate SUB-dependent signaling

    The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana

    No full text
    <p>Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig-like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST. We show that ZERZAUST encodes a putative GPIanchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro, cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infraredspectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis.</p

    The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis

    No full text
    Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.publishe

    The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana

    No full text
    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig-like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST. We show that ZERZAUST encodes a putative GPIanchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro, cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infraredspectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis.</p

    Auxin-dependent control of cytoskeleton and cell shape regulates division orientation in the Arabidopsis embryo

    Get PDF
    Premitotic control of cell division orientation is critical for plant development, as cell walls prevent extensive cell remodeling or migration. While many divisions are proliferative and add cells to existing tissues, some divisions are formative and generate new tissue layers or growth axes. Such formative divisions are often asymmetric in nature, producing daughters with different fates. We have previously shown that, in the Arabidopsis thaliana embryo, developmental asymmetry is correlated with geometric asymmetry, creating daughter cells of unequal volume. Such divisions are generated by division planes that deviate from a default “minimal surface area” rule. Inhibition of auxin response leads to reversal to this default, yet the mechanisms underlying division plane choice in the embryo have been unclear. Here, we show that auxin-dependent division plane control involves alterations in cell geometry, but not in cell polarity axis or nuclear position. Through transcriptome profiling, we find that auxin regulates genes controlling cell wall and cytoskeleton properties. We confirm the involvement of microtubule (MT)-binding proteins in embryo division control. Organization of both MT and actin cytoskeleton depends on auxin response, and genetically controlled MT or actin depolymerization in embryos leads to disruption of asymmetric divisions, including reversion to the default. Our work shows how auxin-dependent control of MT and actin cytoskeleton properties interacts with cell geometry to generate asymmetric divisions during the earliest steps in plant development
    corecore