16,596 research outputs found

    Applicability valuation for evaluation of surface deflection in automotive outer panels

    Get PDF
    Upon unloading in a forming process there is elastic recovery, which is the release of the elastic strains and the redistribution of the residual stresses through the thickness direction, thus producing surface deflection. It causes changes in shape and dimensions that can create major problem in the external appearance of outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Many factors could affect surface deflection in the process, such as material variations in mechanical properties, sheet thickness, tool geometry, processing parameters and lubricant condition. The shape and dimension problem in press forming is defined as a trouble mainly caused by the elastic recovery of materials during the forming. The use of high strength steel sheets in the manufacturing of automobile outer panels has increased in the automotive industry over the years because of its lightweight and fuel-efficient improvement. But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be cost effective, accurate prediction must be made of its formability. The automotive industry places rigi

    An evaluation of planarity of the spatial QRS loop by three dimensional vectorcardiography: its emergence and loss

    Get PDF
    Aims: To objectively characterize and mathematically justify the observation that vectorcardiographic QRS loops in normal individuals are more planar than those from patients with ST elevation myocardial infarction (STEMI). Methods: Vectorcardiograms (VCGs) were constructed from three simultaneously recorded quasi-orthogonal leads, I, aVF and V2 (sampled at 1000 samples/s). The planarity of these QRS loops was determined by fitting a surface to each loop. Goodness of fit was expressed in numerical terms. Results: 15 healthy individuals aged 35–65 years (73% male) and 15 patients aged 45–70 years (80% male) with diagnosed acute STEMI were recruited. The spatial-QRS loop was found to lie in a plane in normal controls. In STEMI patients, this planarity was lost. Calculation of goodness of fit supported these visual observations. Conclusions: The degree of planarity of the VCG loop can differentiate healthy individuals from patients with STEMI. This observation is compatible with our basic understanding of the electrophysiology of the human heart

    An extensible product structure model for product lifecycle management in the make-to-order environment

    Get PDF
    This paper presents a product structure model with a semantic representation technique that make the product structure extensible for developing product lifecycle management (PLM) systems that is flexible for make-to-order environment. In the make-to-order business context, each product could have a number of variants with slightly different constitutions to fulfill different customer requirements. All the variants of a family have common characteristics and each variant has its specific features. A master-variant pattern is proposed for building the product structure model to explicitly represent common characteristics and specific features of individual variants. The model is capable of enforcing the consistency of a family structure and its variant structure, supporting multiple product views, and facilitating the business processes. A semantic representation technique is developed that enables entity attributes to be defined and entities to be categorized in a neutral and semantic format. As a result, entity attributes and entity categorization can be redefined easily with its configurable capability for different requirements of the PLM systems. An XML-based language is developed for semantically representing entities and entity categories. A prototype as a proof-of-concept system is presented to illustrate the capability of the proposed extensible product structure model

    Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Light-cured and Dual-cured Resin Cements

    Get PDF
    Aim: This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and methods: A total of 80 ceramic veneer disks were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These disks were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into four subgroups, based on ceramic disk thickness (0.3, 0.6, 0.9, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using analysis of variance (ANOVA). Results: For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (p \u3c 0.05). For the MH values between LC and DC resin cement groups, there was statistically significant difference (p \u3c 0.05); overall, the MH values of LC resin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (p \u3c 0.05). However, among the LC subgroups, there was no statistically significant difference among them (p \u3e 0.05). Conclusion: The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance: While clinically adequate polymerization of LC resin cement can be achieved with a maximum 1.2 mm of porcelain veneer restoration, the increase of curing time or light intensity is clinically needed for DC resin cements at the thickness of more than 0.9 mm

    Early detection of capping risk in pharmaceutical compacts

    Get PDF
    Capping is a common mechanical defect in tablet manufacturing, exhibited during or after the compression process. Predicting tablet capping in terms of process variables (e.g. compaction pressure and speed) and formulation properties is essential in pharmaceutical industry. In current work, a non-destructive contact ultrasonic approach for detecting capping risk in the pharmaceutical compacts prepared under various compression forces and speeds is presented. It is shown that the extracted mechanical properties can be used as early indicators for invisible capping (prior to visible damage). Based on the analysis of X-ray cross-section images and a large set of waveform data, it is demonstrated that the mechanical properties and acoustic wave propagation characteristics is significantly modulated by the tablet’s internal cracks and capping at higher compaction speeds and pressures. In addition, the experimentally extracted properties were correlated to the directly-measured porosity and tensile strength of compacts of Pearlitol®, Anhydrous Mannitol and LubriTose® Mannitol, produced at two compaction speeds and at three pressure levels. The effect compaction speed and pressure on the porosity and tensile strength of the resulting compacts is quantified, and related to the compact acoustic characteristics and mechanical properties. The detailed experimental approach and reported wave propagation data could find key applications in determining the bounds of manufacturing design spaces in the development phase, predicting capping during (continuous) tablet manufacturing, as well as online monitoring of tablet mechanical integrity and reducing batch-to-batch end-product quality variations

    Two-Particle Microrheology of quasi-2D Viscous Systems

    Full text link
    We study the correlated motions of colloidal particles in a quasi-2D system (Human Serum Albumin (HSA) protein molecules at an air-water interface) for different surface viscosities ηs\eta_{s}. We observe a transition in the behavior of the correlated motion, from 2-D interface dominated at high ηs\eta_{s} to bulk fluid-dependent at low ηs\eta_{s}. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. From the flow field and the correlated particle motions, we calculate a two-particle MSD (mean square displacement) for direct comparison with rheological measurements.Comment: 4 pages, 4 figures, submitted to PR

    Remote surface inspection system

    Get PDF
    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported

    Characterizing Deep-Learning I/O Workloads in TensorFlow

    Full text link
    The performance of Deep-Learning (DL) computing frameworks rely on the performance of data ingestion and checkpointing. In fact, during the training, a considerable high number of relatively small files are first loaded and pre-processed on CPUs and then moved to accelerator for computation. In addition, checkpointing and restart operations are carried out to allow DL computing frameworks to restart quickly from a checkpoint. Because of this, I/O affects the performance of DL applications. In this work, we characterize the I/O performance and scaling of TensorFlow, an open-source programming framework developed by Google and specifically designed for solving DL problems. To measure TensorFlow I/O performance, we first design a micro-benchmark to measure TensorFlow reads, and then use a TensorFlow mini-application based on AlexNet to measure the performance cost of I/O and checkpointing in TensorFlow. To improve the checkpointing performance, we design and implement a burst buffer. We find that increasing the number of threads increases TensorFlow bandwidth by a maximum of 2.3x and 7.8x on our benchmark environments. The use of the tensorFlow prefetcher results in a complete overlap of computation on accelerator and input pipeline on CPU eliminating the effective cost of I/O on the overall performance. The use of a burst buffer to checkpoint to a fast small capacity storage and copy asynchronously the checkpoints to a slower large capacity storage resulted in a performance improvement of 2.6x with respect to checkpointing directly to slower storage on our benchmark environment.Comment: Accepted for publication at pdsw-DISCS 201
    corecore