491 research outputs found

    Azine Dyes as Iodometric Indicators

    Get PDF
    290-29

    Development of Novel Character in Okra [Abelmoschus esculentus (L.) Moench]

    Get PDF
    Transgressive segregation in the population of IIHR-31-1-2 x Arka Anamika BC3 F1-F6 generations led to the development of, various novel characters such as, ridgeless fruits (round fruit) and enhanced nodal productivity bearing short internodal length in okra selection-1, which was found to be promising for cultivation with high yield and good fruit quality. It can be grown both during Kharif and summer seasons. Okra selection-1 was also found to exhibit smooth fruits, high yield potential with sturdy plant habit and field tolerance to fusarium wilt and YVMV. Due to rapid rate of increase of processing in okra by freezing and canning, Okra selection I may be an ideal fruit type for freezing because of its short, smooth, dark green and round or multifaceted fruits with low mucilage content

    Quasi-one dimensional electrical conductivity and thermoelectric power studies on a discotic liquid crystal

    Get PDF
    We have studied the electrical conductivity of well aligned samples of hexahexylthiotriphenylene (HHTT) in the pure as well as doped states. The dopant used was a small concentration (0.62 mole %) of the electron acceptor trinitrofluorenone (TNF). In the columnar phases, doping causes the AC(1 kHz) conductivity along the columnar axis (σ ||) to increase by a factor of 107 or more relative to that in undoped samples; σ || attains a value of 10-2S/m, which was the maximum measurable limit of our experimental set up. On the other hand, in the isotropic phase doping makes hardly any difference to the conductivity. The frequency dependence of the conductivity has been investigated. The DC conductivity of doped samples exhibits an enormous anisotropy, σ ||/σ⊥ ≥ 1010, which is 7 orders higher than that reported for any liquid crystalline system, and, to our knowledge, the largest observed in an organic conductor. We also report the first thermoelectric power studies on these 'molecular wires'. The sign of the thermoelectric power is in conformity with the expected nature of the charge carriers, namely, holes

    Studies on biosorption of nickel using immobilized fungus, Rhizomucor tauricus

    Get PDF
    Rhizomucor tauricus, an industrial fungus, was immobilized in sodium alginate and used as adsorbent for the removal of nickel from aqueous solutions. The biosorption capacity of Ni(II) was found to be 394 mg/g of immobilized biomass. It was observed that an increase in pH from 3 to 6 increased the percent adsorption, and an increase in liquid-to-solid ratio from 2 to 10 increased the metal uptake. The percent adsorption was increased when increasing the initial metal concentration from 25 to 100 mg/L. The equilibrium biosorption data was evaluated by Langmuir, Freundlich, and Langmuir-Freundlich (L-R) isotherm models, and was best described by the Langmuir and Freundlich isotherms. FTIR analysis revealed that –NH (bending), C–H (stretching), C=O (stretching), and –OH functional groups were mainly responsible for Ni(II) biosorption. Thus, this study demonstrated that the immobilized Rhizomucor tauricus biomass could be used as an adsorbent for the treatment of Ni(II) from aqueous solution

    Characterizing the normal proteome of human ciliary body

    Get PDF
    BACKGROUND: The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body. RESULTS: In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis. CONCLUSIONS: More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia

    Export fluxes of dissolved inorganic carbon to the northern Indian Ocean from the Indian monsoonal rivers

    Get PDF
    Rivers are an important source of dissolved inorganic carbon (DIC) to the adjacent coastal waters. In order to examine the spatial variability in the distribution and major sources of DIC in the Indian monsoonal rivers and to quantify their export flux to the northern Indian Ocean, 27 major and medium-sized rivers were sampled during the discharge period. Significant spatial variability in concentrations of DIC (3.4–73.6&thinsp;mg&thinsp;L−1) was observed, and it is attributed to spatial variations in the precipitation pattern, the size of rivers, pollution and lithology of the catchments. The stable isotopic composition of DIC (δ13CDIC) also showed strong spatial variability (−13.0&thinsp;‰ to −1.4&thinsp;‰) in the Indian monsoonal rivers with relatively depleted δ13CDIC values in rivers of the northwest of India (-11.1±2.3&thinsp;‰) and enriched values in the southeast of India (-3.5±2.3&thinsp;‰). Results of the linear least-squares regression models of Keeling and Miller–Tan's plots indicated that the chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers. Spatial variability in the deviation of δ13CDIC from the approximated δ13C of the source may probably be due to dominant autotrophic production in rivers of the southeastern region, whereas heterotrophic decomposition of organic matter largely influences the other Indian monsoonal rivers. It is estimated that the Indian monsoonal rivers annually export ∼10.3&thinsp;Tg of DIC to the northern Indian Ocean, of which the major fraction (75&thinsp;%) enters into the Bay of Bengal, and the remaining fraction reaches to the Arabian Sea. This is consistent with the freshwater flux, which is 3 times higher for the Bay of Bengal (∼378&thinsp;km3&thinsp;yr−1) than for the Arabian Sea (122&thinsp;km3&thinsp;yr−1). Despite discharge from the Indian monsoonal rivers accounting for only 1.3&thinsp;% of the global freshwater discharge, they disproportionately export 2.5&thinsp;% of the total DIC exported by the world's major rivers. Despite rivers from the region in the southwest (SW) of India exporting DIC that is an order of magnitude lower (0.3&thinsp;Tg&thinsp;yr−1) than the rivers from other regions of India, the highest yield of DIC was found in the rivers of the SW region of India. It is attributed to intense precipitation (∼3000&thinsp;mm), favorable natural vegetation of tropical moist deciduous and tropical wet evergreen and semi-evergreen forests, tropical wet climate, high soil organic carbon, and the dominance of red loamy soils in catchments of the rivers of the SW region.</p

    Performance of the ocean state forecast system at Indian National Centre for Ocean Information Services

    Get PDF
    The reliability of the operational Ocean State Forecast system at the Indian National Centre for Ocean Information Services (INCOIS) during tropical cyclones that affect the coastline of India is described in this article. The performance of this system during cyclone Thane that severely affected the southeast coast of India during the last week of December 2011 is reported here. Spec-tral wave model is used for forecasting the wave fields generated by the tropical cyclone and vali-dation of the same is done using real-time automated observation systems. The validation results indicate that the forecasted wave parameters agree well with the measurements. The feedback from the user community indicates that the forecast was reliable and highly useful. Alerts based on this operational ocean state forecast system are thus useful for protecting the property and lives of the coastal communities along the coastline of India. INCOIS is extending this service for the benefit of the other countries along the Indian Ocean rim

    Wave forecasting and monitoring during very severe cyclone Phailin in the Bay of Bengal

    Get PDF
    Wave fields, both measured and forecast during the very severe cyclone Phailin, are discussed in this communication. Waves having maximum height of 13.54 m were recorded at Gopalpur, the landfall point of the cyclone. The forecast and observed significant wave heights matched well at Gopalpur with correlation coefficient of 0.98, RMS error of 0.35 m and scatter index of 14%. Forecasts were also validated in the open ocean and found to be reliable (scatter index &#60; 15%). The study also revealed the presence of Southern Ocean swells with a peak period of 20-22 sec hitting Gopalpur coast along with the cyclone-generated waves

    Super-reflection of light from a random amplifying medium with disorder in the complex refractive index : Statistics of fluctuations

    Full text link
    The probability distribution of the reflection coefficient for light reflected from a one-dimensional random amplifying medium with {\it cross-correlated} spatial disorder in the real and the imaginary parts of the refractive index is derived using the method of invariant imbedding. The statistics of fluctuations have been obtained for both the correlated telegraph noise and the Gaussian white-noise models for the disorder. In both cases, an enhanced backscattering (super-reflection with reflection coefficient greater than unity) results because of coherent feedback due to Anderson localization and coherent amplification in the medium. The results show that the effect of randomness in the imaginary part of the refractive index on localization and super-reflection is qualitatively different.Comment: RevTex 6 pages, 3 figures in ps file
    corecore