14 research outputs found

    Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II.

    Get PDF
    Only going beyond the static crystal picture through molecular dynamics simulations can a realistic excitonic picture of the light-harvesting complex CP29 be obtained using a multiscale polarizable QM/MM approach

    The SARS-CoV-2 spike protein binds and modulates estrogen receptors

    Full text link
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor alpha (ER alpha). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 sub-unit. In cultured cells, S DNA transfection increased ER alpha cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ER alpha lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ER alpha and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ER alpha interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology

    Esterase 2 as a Fluorescent Biosensor for the Detection of Organophosphorus Compounds: Docking and Electronic Insights from Molecular Dynamics

    No full text
    Organophosphorus compounds (OP) are mainly used in agriculture as pesticides. Unfortunately, each year many rural workers die intoxicated by those compounds. Sometimes the diagnosis of the exact molecule that caused the intoxication can be tardy. In this work, we have applied computational chemistry methodologies and Förster fluorescence resonance energy transfer theory to have a better understanding of the fluorescence profiles that are described in the literature. </div

    Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids

    No full text
    Carotenoids are important actors both in light-harvesting (LH) and in photoprotection functions of photosynthetic pigment-protein complexes. A deep theoretical investigation of this multiple role is still missing owing to the difficulty of describing the delicate interplay between electronic and nuclear degrees of freedom. A possible strategy is to combine accurate quantum mechanical (QM) methods with classical molecular dynamics. To do this, however, accurate force-fields (FF) are necessary. This article presents a new FF for the different carotenoids present in LH complexes of plants. The results show that all the important structural properties described by the new FF are in very good agreement with QM reference values. This increased accuracy in the simulation of the structural fluctuations is also reflected in the description of excited states. Both the energy order and the different nature of the lowest singlet states are preserved during the dynamics when the new FF is used, whereas an unphysical mixing is found when a standard FF is used

    Could Quantum Mechanical Properties be Reflected on Classical Molecular Dynamics? the Case of Halogenated Organic Compounds of Biological Interest

    No full text
    Essential to understanding life, the biomolecular phenomena have been an important subject in science, therefore a necessary path to be covered to make progress in human knowledge. To fully comprehend these processes, the noncovalent interactions are the key. In this review, we discuss how specific protein-ligand interactions can be efficiently described by low computational cost methods, such as Molecular Mechanics (MM). We have taken as example the case of the halogen bonds (XB). Albeit generally weaker than the hydrogen bonds (HB), the XBs play a key role to drug design, enhancing the affinity and selectivity towards the biological target. Along with the attraction between two electronegative atoms in XBs explained by the σ-hole model, important orbital interactions, as well as relief of Pauli repulsion take place. Nonetheless, such electronic effects can be only well described by accurate quantum chemical methods that have strong limitations dealing with supramolecular systems due to their high computational cost. To go beyond the poor description of XBs by MM methods, reparametrizing the force-fields equations can be a way to keep the balance between accuracy and computational cost. Thus, we have shown the steps to be considered when parametrizing force-fields to achieve reliable results of complex noncovalent interactions at MM level for In Silico drug design methods.</p

    Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations

    Get PDF
    The quenching of Chlorophyll triplets by triplet energy transfer (TET) to carotenoids is one of the photoprotection strategies in photosynthetic organisms, and prevents singlet oxygen formation. Here we present the study of TET rates in a minor light-harvesting complex (LHC) of higher plants, using a fully atomistic strategy that combines a molecular dynamic simulation a polarizable quantum/classical calculation. We find that structural fluctuations of the LHC can largely enhance the TET rates, which are in the sub-nanosecond scale, in agreement with experimental findings

    Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments

    No full text
    The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g., neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients&#8217; quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs

    The SARS-CoV-2 spike protein binds and modulates estrogen receptors

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 (ACE2) at the cell surface, which constitutes the primary mechanism driving SARS-CoV-2 infection. Molecular interactions between the transduced S and endogenous proteins likely occur post-infection, but such interactions are not well understood. We used an unbiased primary screen to profile the binding of full-length S against >9,000 human proteins and found significant S-host protein interactions, including one between S and human estrogen receptor alpha (ERα). After confirming this interaction in a secondary assay, we used bioinformatics, supercomputing, and experimental assays to identify a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit and an S-ERα binding mode. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects and ACE2 expression. Noninvasive multimodal PET/CT imaging in SARS-CoV-2-infected hamsters using [18F]fluoroestradiol (FES) localized lung pathology with increased ERα lung levels. Postmortem experiments in lung tissues from SARS-CoV-2-infected hamsters and humans confirmed an increase in cytoplasmic ERα expression and its colocalization with S protein in alveolar macrophages. These findings describe the discovery and characterization of a novel S-ERα interaction, imply a role for S as an NRC, and are poised to advance knowledge of SARS-CoV-2 biology, COVID-19 pathology, and mechanisms of sex differences in the pathology of infectious disease
    corecore