85 research outputs found

    In‐Liquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation

    Get PDF
    The oxygen evolution reaction (OER) and the value-added oxidation of renewable organic substrates are critical to supply electrons and protons for the synthesis of sustainable fuels. To meet industrial requirements, new methods for a simple, fast, environmental-friendly and cheap synthesis of robust, self-supported and high surface area electrodes are required. Herein, a novel in-liquid plasma (plasma electrolysis) approach for the growth of hierarchical nanostructures on nickel foam is reported on. Under morphology retention, iron can be doped into this high surface area electrode. For the oxidation of 5-(hydroxymethyl)furfural and benzyl alcohol, the iron-free, plasma-treated electrode is more suitable reaching current densities up to 800 mA cm−2^{-2} with Faradaic efficiencies above 95%. For the OER, the iron-doped nickel foam electrode reaches the industrially relevant current density of 500 mA cm−2^{-2} at 1.473 ± 0.013VRHE_{VRHE} (60 °C) and shows no activity decrease over 140 h. The different effects of iron doping are rationalized using methanol probing and in situ Raman spectroscopy. Furthermore, the intrinsic activity is separated from the number of active sites, and, for the organic oxidation reactions, diffusion limitations are revealed. The authors anticipate that the plasma modified nickel foam will be suitable for various (electro)catalytic processes

    Tailoring Cu Electrodes for Enhanced CO 2 Electroreduction through Plasma Electrolysis in Non‐Conventional Phosphorus‐Oxoanion‐Based Electrolytes

    Get PDF
    This study presents a green, ultra-fast, and facile technique for the fabrication of micro/nano-structured and porous Cu electrodes through in-liquid plasma electrolysis using phosphorous-oxoanion-based electrolytes. Besides the preferential surface faceting, the Cu electrodes exhibit unique surface structures, including octahedral nanocrystals besides nanoporous and microporous structures, depending on the employed electrolyte. The incorporation of P-atoms into the Cu surfaces is observed. The modified Cu electrodes display increased roughness, leading to higher current densities for CO2 electroreduction reaction. The selectivity of the modified Cu electrodes towards C2 products is highest for the Cu electrodes treated in Na2HPO3 and Na3PO4 electrolytes, whereas those treated in Na2H2PO2 produce the most H2. The Cu electrode treated in Na3PO4 produces ethylene (23 %) at −1.1 V vs. RHE, and a comparable amount of acetaldehyde (15 %) that is typically observed for Cu(110) single crystals. The enhanced selectivity is attributed to several factors, including the surface morphology, the incorporation of phosphorus into the Cu structure, and the formation of Cu(110) facets. Our results not only advance our understanding of the influence of the electrolyte\u27s nature on the plasma electrolysis of Cu electrodes, but also underscores the potential of in-liquid plasma treatment for developing efficient Cu electrocatalysts for sustainable CO2 conversion

    In‐Liquid Plasma for Surface Engineering of Cu Electrodes with Incorporated SiO2 Nanoparticles: From Micro to Nano

    Get PDF
    A robust and efficient route to modify the chemical and physical properties of polycrystalline copper (Cu) wires via versatile plasma electrolysis is presented. Silica (SiO2) nanoparticles (11 nm) are introduced during the electrolysis to tailor the surface structure of the Cu electrode. The influence of these SiO2 nanoparticles on the structure of the Cu electrodes during plasma electrolysis over a wide array of applied voltages and processing time is investigated systematically. Homogeneously distributed 3D coral‐like microstructures are observed by scanning electron microscopy on the Cu surface after the in‐liquid plasma treatment. These 3D microstructures grow with increasing plasma processing time. Interestingly, the microstructured copper electrode is composed of CuO as a thin outer layer and a significant amount of inner Cu2O. Furthermore, the oxide film thickness (between 1 and 70 ”m), the surface morphology, and the chemical composition can be tuned by controlling the plasma parameters. Remarkably, the fabricated microstructures can be transformed to nanospheres assembled in coral‐like microstructures by a simple electrochemical treatment.DFG, 327886311, SFB 1316: Transiente AtmosphĂ€rendruckplasmen - vom Plasma zu FlĂŒssigkeiten zu FestkörpernDFG, 390874152, EXC 2154: POLiS - Post Lithium Storage Cluster of Excellenc

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Observation of four top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for a high-mass dimuon resonance produced in association with b quark jets at s \sqrt{s} = 13 TeV

    Get PDF

    Search for Scalar Leptoquarks Produced via τ-Lepton-Quark Scattering in pppp Collisions at s=13TeV\sqrt{s}=13 TeV

    Get PDF
    The first search for scalar leptoquarks produced in τ-lepton–quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb−1^{−1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength
    • 

    corecore