62 research outputs found

    Effects of transportation, relocation, and acclimation on phenotypes and functional characteristics of peripheral blood lymphocytes in rhesus monkeys (<i>Macaca mulatta</i>)

    Get PDF
    Nonhuman primates from domestic sources constitute a small, but critical, proportion of animals studied in research laboratories. Many of these nonhuman primates are raised at one facility and subsequently transported/relocated to another facility for research purposes. We examined the effects of transport, relocation, and acclimation on the phenotype and function of peripheral blood mononuclear cells (PBMCs) in a group of rhesus monkeys that were transported by road for approximately 21 hours from one facility to another. Using a panel of human antibodies and a set of standardized human immune assays, we evaluated the phenotype of lymphocyte subsets by flow, mitogen-specific immune responses of PBMCs in vitro, and levels of circulating cytokines and cortisol in plasma at various time points including immediately before transport, immediately upon arrival, and after approximately 30 days of acclimation. Analyses of blood samples revealed that CD3+ T-cell and CD20+ B-cell populations had decreased significantly immediately after relocation but had recovered within 30 days after arrival at the new facility. Similarly, circulating cortisol and cytokine levels in plasma were significantly higher immediately after relocation; and by the 30-day time point, these differences were no longer significant. However, immune assays of PBMCs indicated that mitogen-specific responses for proliferation, interferon γ (IFN-γ), and perforin were significantly higher after relocation and 30 days of acclimation. These findings have implications on the research participation of transported and relocated nonhuman primates in immunologic research studies, suggesting that 30 days is not sufficient to ensure return to baseline immune homeostasis. These data should be considered when planning research studies in order to minimize potential confounding factors associated with relocation and to maximize study validity

    Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Get PDF
    HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans

    GeorgeOral Immunization of Rhesus Macaques with Adenoviral HIV Vaccines Using Enteric-coated Capsules

    Get PDF
    Targeted delivery of vaccine candidates to the gastrointestinal (GI) tract holds potential for mucosal immunization, particularly against mucosal pathogens like the human immunodeficiency virus (HIV). Among the different strategies for achieving targeted release in the GI tract, namely the small intestine, pH sensitive enteric coating polymers have been shown to protect solid oral dosage forms from the harsh digestive environment of the stomach and dissolve relatively rapidly in the small intestine by taking advantage of the luminal pH gradient. We developed an enteric polymethacrylate formulation for coating hydroxy-propyl-methyl-cellulose (HPMC) capsules containing lyophilized Adenoviral type 5 (Ad5) vectors expressing HIV-1 gag and a string of six highly-conserved HIV-1 envelope peptides representing broadly cross-reactive CD4+ and CD8+ T cell epitopes. Oral immunization of rhesus macaques with these capsules primed antigen-specific mucosal and systemic immune responses and subsequent intranasal delivery of the envelope peptide cocktail using a mutant cholera toxin adjuvant boosted cellular immune responses including, antigen-specific intracellular IFN-γ-producing CD4+ and CD8+ effector memory T cells in the intestine. These results suggest that the combination of oral adenoviral vector priming followed by intranasal protein/peptide boosting may be an effective mucosal HIV vaccination strategy for targeting viral antigens to the GI tract and priming systemic and mucosal immunity

    Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques

    Get PDF
    Additional file 1. General method for isolation of stromal-vascular-fraction (AT-SVF) cells from adipose tissue of rhesus macaques, and subsequent analyses. (A) 30-60 mins collagenase digestion of solid adipose tissue samples from rhesus macaques is followed by washing and centrifugation, allowing for separation of mature adipocytes (floater fraction) from the stromal-vascular-fraction (AT-SVF) cells. AT-SVF cells were then analyzed by flow cytometry, nested PCR, and viral outgrowth assays, and floater fraction adipocytes analyzed for mRNA expression. (B) Sample flow cytometry gating schemes for examination of AT-SVF T cells, NKT cells, macrophages, and B cells

    A two-codon mutant of cholera toxin lacking ADP-ribosylating activity functions as an effective adjuvant for eliciting mucosal and systemic cellular immune responses to peptide antigens

    Get PDF
    Abstract Vaccination with peptide antigens is an effective strategy against mucosal viral infections. We tested a two-codon mutant of cholera toxin (CT-2*) lacking ADP-ribosylating activity and toxicity as a mucosal adjuvant for T cell epitope peptides for intranasal immunization of mice. Efficient induction of helper and cytotoxic T lymphocyte responses associated with TH1 cytokine production were observed in the systemic and mucosal compartments including nasal, gut, and vaginal associated lymphoid tissues. Single or multiple dosing with the peptide antigen and CT-2* induced strong memory immunity without tolerance. These results demonstrate CT-2* as a suitable mucosal adjuvant for priming antigen-specific cellular immune responses

    Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines

    Get PDF
    All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors. HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further investigation as alternatives to FG vectors as gene-based vaccines

    Functional Impairment of Central Memory CD4 T Cells Is a Potential Early Prognostic Marker for Changing Viral Load in SHIV-Infected Rhesus Macaques

    Get PDF
    In HIV infection there is a paucity of literature about the degree of immune dysfunction to potentially correlate and/or predict disease progression relative to CD4+ T cells count or viral load. We assessed functional characteristics of memory T cells subsets as potential prognostic markers for changing viral loads and/or disease progression using the SHIV-infected rhesus macaque model. Relative to long-term non-progressors with low/undetectable viral loads, those with chronic plasma viremia, but clinically healthy, exhibited significantly lower numbers and functional impairment of CD4+ T cells, but not CD8+ T cells, in terms of IL-2 production by central memory subset in response to PMA and ionomycine (PMA+I) stimulation. Highly viremic animals showed impaired cytokine-production by all T cells subsets. These results suggest that functional impairment of CD4+ T cells in general, and of central memory subset in particular, may be a potential indicator/predictor of chronic infection with immune dysfunction, which could be assayed relatively easily using non-specific PMA+I stimulation

    Effects of relocation on immunological and physiological measures in female squirrel monkeys (Saimiri boliviensis boliviensis).

    No full text
    In the present study, we have quantified the effects of transport, relocation and acclimate/adapt to their new surroundings on female squirrel monkey. These responses are measured in blood samples obtained from squirrel monkeys, at different time points relative to their relocation from their old home to their new home. A group of squirrel monkeys we transported, by truck, for approximately 10 hours. Peripheral blood mononuclear cells (PBMCs) were assayed in order to evaluate the phenotype of lymphocyte subsets by flow, mitogen-specific immune responses of PBMCs in vitro, and levels of cytokines at various time points including immediately before transport, immediately upon arrival, and after approximately 150 days of acclimation. We observed significant changes in T cells and subsets, NK and B cells (CD4+, CD8+, CD4+/CD8+, CD16+, and CD20+). Mitogen specific (e.g. PHA, PWM and LPS) proliferation responses, IFN-γ by ELISPOT assay, and cytokines (IL-2, IL-4 and VEGF) significant changes were observed. Changes seen in the serum chemistry measurements mostly complement those seen in the hematology data. The specific goal was to empirically assess the effects of relocation stress in squirrel monkeys in terms of changes in the numbers and functions of various leukocyte subsets in the blood and the amount of time required for acclimating to their new environment. Such data will help to determine when newly arrived animals become available for use in research studies
    corecore