9 research outputs found

    China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    No full text
    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy

    Global agricultural responses to interannual climate and biophysical variability

    No full text
    Most studies assessing climate impacts on agriculture have focused on average changes in market-mediated responses (e.g. changes in land use, production, and consumption). However, the response of global agricultural markets to interannual variability (IAV) in climate and biophysical shocks is poorly understood and not well represented in global economic models. Here we show a strong transmission of IAVs in climate-induced biophysical yield shocks to agriculture markets, which is further magnified by endogenous market fluctuations generated due to producers’ imperfect expectations of market and weather conditions. We demonstrate that the volatility of crop prices and consumption could be significantly underestimated (i.e. on average by 55% and 41%, respectively) by assuming perfect foresight, a standard assumption in the economic equilibrium modeling, compared with the relatively more realistic adaptive expectations. We also find heterogeneity in IAV across crops and regions, which is considerably mediated by international trade. Studying IAV provides fundamentally new insights on measuring and understanding climate impacts on global agriculture, and our framework lays the foundation for further investigating the full range of climate impacts on biophysical and human systems
    corecore