7 research outputs found

    Contrasting seed biology of two ornamental palms: Pygmy Date Palm (Phoenix roebelenii O’Brien) and Fishtail Palm (Caryota urens L.)

    Get PDF
    The Arecaceae family includes palm trees of economic importance both as a source of agricultural produce and asornamental components in landscaping projects. Pygmy date palm (Phoenix roebelenii) and solitary fishtail palm (Caryotaurens) are well known landscaping plants today. Both species have their origin in Southeast Asia and, especially C. urens iswidespread in peninsular India and Sri Lanka. They are multipurpose species with a variety of applications and thus veryheavily utilized. Knowledge of palm seed storage biology will improve their conservation prospects. In present studies, freshseed moisture content in P. roebelenii was recorded to be 30% with germinability of 98%. After desiccation to 8% moisturegerminability was reduced to 90% and the seeds survived cryo-exposure. Fresh seeds of C. urens, with initial moisturecontent of 34% and 95% germinability could be desiccated to lowest level of only 29% moisture content, with complete lossof germinability. Fresh as well as desiccated seeds of this species did not survive cryo-exposure. While the seeds of C. urensstored at room temperature lost their germinability by 110 days, seeds of P. roebelenii could germinate even after 9 monthsof storage. P. roebelenii is proven to exhibit orthodox seed storage behaviour while C. urens is found to exhibit recalcitrantseed storage behaviour. Long-term ex situ cryo-conservation in the form of seed gene banks would be suitable for seedpropagated orthodox palm species and a few germplasm centres may be established for recalcitrant Indian palms in suitablebio-geographic regions as a complimentary ex situ conservation

    Resilient High-Rise Timber Building System with Buckling-Restrained Braces

    No full text
    Applied Science, Faculty ofEngineering, School of (Okanagan)UnreviewedFacultyPostdoctora

    Efficient algorithms using subiterative convergence for Kemeny ranking problem

    No full text
    Multidimensional ranking is useful to practitioners in political science, computer science, social science, medical science, and allied fields. The objective is to identify a consensus ranking of n objects that best fi ts independent rankings given by k different judges. The Kemeny distance is used as a metric to obtain consensus ranking. For large n, under present computing powers, it is not feasible to identify a consensus ranking. To address the problem, researchers have proposed several algorithms. These algorithms are able to handle datasets with n up to 200 in a reasonable amount of time. However, run-time increases very quickly as n increases. In the present paper, we propose two basic algorithms - Subiterative Convergence and Greedy Algorithm. Using these basic algorithms, two advanced algorithms - FUR and SIgFUR are developed. We show that our results are superior both in terms of Kemeny distance, as a performance measure, and run-time to existing algorithms. The proposed algorithms, even for large n, runs in few minutes

    Context-Specific Requirement of Forty-Four Two-Component Loci in Pseudomonas aeruginosa Swarming

    Get PDF
    Summary: Swarming in Pseudomonas aeruginosa is a coordinated movement of bacteria over semisolid surfaces (0.5%–0.7% agar). On soft agar, P. aeruginosa exhibits a dendritic swarm pattern, with multiple levels of branching. However, the swarm patterns typically vary depending upon the experimental design. In the present study, we show that the pattern characteristics of P. aeruginosa swarm are highly environment dependent. We define several quantifiable, macroscale features of the swarm to study the plasticity of the swarm, observed across different nutrient formulations. Furthermore, through a targeted screen of 113 two-component system (TCS) loci of the P. aeruginosa strain PA14, we show that forty-four TCS genes regulate swarming in PA14 in a contextual fashion. However, only four TCS genes—fleR, fleS, gacS, and PA14_59770—were found essential for swarming. Notably, many swarming-defective TCS mutants were found highly efficient in biofilm formation, indicating opposing roles for many TCS loci. : Pathogenic Organism; Biological Sciences; Microbiology Subject Areas: Pathogenic Organism, Biological Sciences, Microbiolog
    corecore