11 research outputs found

    A Validated Stability-Indicating RP-UPLC Method for Simultaneous Determination of Desloratadine and Sodium Benzoate in Oral Liquid Pharmaceutical Formulations

    Get PDF
    A novel, sensitive and selective stability-indicating gradient reverse phase ultra performance liquid chromatographic method was developed and validated for the quantitative determination of desloratadine and sodium benzoate in pharmaceutical oral liquid formulation. The chromatographic separation was achieved on Acquity BEH C8 (100 mm × 2.1 mm) 1.7 μm column by using mobile phase containing a gradient mixture of solvent A (0.05 M KH2PO4 and 0.07 M triethylamine, pH 3.0) and B (50:25:25 v/v/v mixture of acetonitrile, methanol and water) at flow rate of 0.4 mL/min. Column temperature was maintained at 40°C and detection was carried out at a wavelength of 272 nm. The described method shows excellent linearity over a range of 0.254 μg/mL to 76.194 μg/mL for desloratadine and 1.006 μg/mL to 301.67 μg/mL for sodium benzoate. The correlation coefficient for desloratadine and sodium benzoate was more than 0.999. To establish stability-indicating capability of the method, drug product was subjected to the stress conditions of acid, base, oxidative, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from desloratadine and sodium benzoate. The developed method was validated as per international ICH guidelines with respect to specificity, linearity, LOD, LOQ, accuracy, precision and robustness

    Cost-Effective Isolation of a Process Impurity of Pregabalin

    No full text

    Isolation, Identification, and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in the Tolterodine Tartrate Formulation

    No full text
    A short and sensitive stability-indicating gradient RP-UPLC method was developed for the quantitative determination of process-related impurities and degradation products of tolterodine tartrate in pharmaceutical formulations. The method was developed by using the Waters ACQUITY UPLC™ BEH shield RP18 (2.1 x 100 mm, 1.7 μm) column with a mobile phase containing a gradient mixture of solvent A and B at a detection wavelength of 210 nm. During the stress study, the degradation products of tolterodine tartrate were well-resolved from tolterodine and its impurities and the mass balances were found to be satisfactory in all the stress conditions, thus proving the stability-indicating capability of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantifica-tion, accuracy, precision, ruggedness, and robustness. During the stability (40°C/75% RH, 3 months) analysis of the drug product, one unknown impurity was detected by the above stability-indicating method. The unknown impurity was isolated by preparative HPLC and subjected to mass and NMR studies. Based on the spectral data, the unknown impurity was characterised as 2-(3-amino-1-phenylpropyl)-4-methylphenol (des-N,N-diisopropyl tolterodine). Structural elucidation of the impurity by spectral data is discussed in detail

    Cost-Effective Isolation of a Process Impurity of Pregabalin

    No full text
    Cost-effective isolation methods were developed on preparative HPLC, flash LC, and simulated moving bed (SMB) to prepare the process impurity, 3-(aminomethyl)-5-methylhex-4-enoic acid (4-ene impurity), of pregabalin. By a thorough experimental study on the different isolation techniques available, it was concluded that SMB was the most cost-effective. Hence, it was a continuous chromatography that utilized the advantage of SMB so that a high quantity of the impurity was generated in a short period of time. SMB was equipped with eight reversed-phased columns and was used to separate the process impurity of pregabalin. The effects of flow rate in zone 2 (Q2) and 3 (Q3), as well as switching time, on the operating performance parameters like purity, productivity, and desorbent consumption were studied. Operating conditions leading to more than 90% purity in the raffinate outlet stream were identified, together with those achieving optimal performance. All of these developed methods are novel, cost-effective, and can be applied to the isolation of other process- and stability-related impurities of pregabalin
    corecore