6 research outputs found

    Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure

    Get PDF
    Zinc (Zn) is one of the important elements of plant growth, however, at elevated level it is toxic. Exposure of Chinese cabbage to elevated Zn2+ concentrations (5 and 10 μM ZnCl2) resulted in enhancement of total sulfur and organic sulfur concentration. Transcript level of APS reductase (APR) as a key enzyme in biosynthesis of primary sulfur compounds (cysteine and thiols), was up-regulated in both shoot and root upon exposure to elevated Zn2+, which was accompanied by an increase in the concentration of cysteine in both tissues. In contrast, the concentration of thiols increased only in the root by 5.5 and 15-fold at 5 and 10 μM Zn2+, respectively, which was in accompanied by an upregulation of ATP sulfurylase, an enzyme responsible for activation of sulfate. An elevated content of glucosinolates, mostly indolic glucosinolates, only in the shoot of plants exposed to excess level of Zn2+ coincided with an increase in gene expression of key biosynthetic enzymes and regulators (CYP79B3, CYP83B1, MYB34). Thus distinct acuumulation patterns of sulfur containing compounds in root and shoot of Chinese cabbage may be a strategy for Chinese cabbage to combat with exposure to excess Zn

    Interactions of sulfate with other nutrients as revealed by H2S fumigation of Chinese cabbage

    Get PDF
    Sulfur deficiency in plants has severe impacts on both growth and nutrient composition. Fumigation with sub-lethal concentrations of H2S facilitates the supply of reduced sulfur via the leaves while sulfate is depleted from the roots. This restores growth while sulfate levels in the plant tissue remain low. In the present study this system was used to reveal interactions of sulfur with other nutrients in the plant and to ascertain whether these changes are due to the absence or presence of sulfate or rather to changes in growth and organic sulfur. There was a complex reaction of the mineral composition to sulfur deficiency, however, the changes in content of many nutrients were prevented by H2S fumigation. Under sulfur deficiency these nutrients accumulated on a fresh weight basis but were diluted on a dry weight basis, presumably due to a higher dry matter content. The pattern differed, however, between leaves and roots which led to changes in shoot to root partitioning. Only the potassium, molybdenum and zinc contents were strongly linked to the sulfate supply. Potassium was the only nutrient amongst those measured which showed a positive correlation with sulfur content in shoots, highlighting a role as a counter cation for sulfate during xylem loading and vacuolar storage in leaves. This was supported by an accumulation of potassium in roots of the sulfur-deprived plants. Molybdenum and zinc increased substantially under sulfur deficiency, which was only partly prevented by H2S fumigation. While the causes of increased molybdenum under sulfur deficiency have been previously studied, the relation between sulfate and zinc uptake needs further clarification

    Copper toxicity affects indolic glucosinolates and gene expression of key enzymes for their biosynthesis in Chinese cabbage

    Get PDF
    Excessive levels of Cu2+ are phytotoxic and exposure of Chinese cabbage to elevated Cu2+ concentrations led to reduction of the plant biomass. To get more insight into the role of glucosinolates upon copper stress, the impact of elevated Cu2+ levels on glucosinolates biosynthesis were studied in Chinese cabbage. The content of total glucosinolates was only elevated in the roots, mostly due to indolic and aromatic glucosinolates. The results showed a higher contribution of indolic glucosinolates, notably glucobrassicin, a 2- and 4-fold increase in Chinese cabbage exposed to 5 and 10 µM Cu2+, respectively. Furthermore, the increase in the indolic glucosinolates was accompanied by enhanced transcript levels of CYP79B2 and CYP83B1, two genes involved in biosynthesis of indolic glucosinolates, and that of the MYB51, a transcription factor involved in regulation of indolic glucosinolate biosynthesis pathway, at elevated Cu2+ concentrations. In addition, total sulfur and nitrogen remained unaffected in the root, but total glucosinolate was significantly enhanced upon exposure to elevated Cu2+. This result may show that relatively more sulfur and nitrogen was channeled into glucosinolates in the root. In conclusion, accumulation of indolic glucosinolates in the root can be considered as a strategy for Chinese cabbage to combat elevated Cu2+ concentrations

    Book of Abstracts of the 2nd International Conference on Applied Mathematics and Computational Sciences (ICAMCS-2022)

    No full text
    It is a great privilege for us to present the abstract book of ICAMCS-2022 to the authors and the delegates of the event. We hope that you will find it useful, valuable, aspiring, and inspiring. This book is a record of abstracts of the keynote talks, invited talks, and papers presented by the participants, which indicates the progress and state of development in research at the time of writing the research article. It is an invaluable asset to all researchers. The book provides a permanent record of this asset. Conference Title: 2nd International Conference on Applied Mathematics and Computational SciencesConference Acronym: ICAMCS-2022Conference Date: 12-14 October 2022Conference Organizers: DIT University, Dehradun, IndiaConference Mode: Online (Virtual
    corecore