1,429 research outputs found

    Rock Response in a 12-M Tunnel through a Zone of Low Strength

    Get PDF
    At the Rocky Mountain Pumped Storage Project a 12 meter diameter power tunnel was excavated through sedimentary rock for 760 meters. Approximately 10% of this tunnel was through Pennington shale that is described as a dark gray massive organic shale. This paper will describe the methods of testing .and rock characterization, the results of instrumentation and monitoring, and the post-construction testing program for the excavation, and conclude with a discussion of the observed rock response in relation to the measured strength and deformation properties. This particular zone of the tunnel required the addition of longer rockbolts, and a discussion of that supplemental rock reinforcement will be included

    Saturation of Magnetorotational Instability through Magnetic Field Generation

    Full text link
    The saturation mechanism of Magneto-Rotational Instability (MRI) is examined through analytical quasilinear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the alpha effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.Comment: 9 pages, 10 figures to appear in ApJ, Jun 2009, 10 v69

    Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films

    Get PDF
    The ultra-violet (UV) and vacuum ultra-violet (VUV) resistance of bridging alkylene groups in organosilica films has been investigated. Similar to the Si-CH3 (methyl) bonds, the Si-CH2-Si (methylene) bonds are not affected by 5.6 eV irradiation. On the other hand, the concentration of the Si-CH2-CH2-Si (ethylene) groups decreases during such UV exposure. More significant difference in alkylene reduction is observed when the films are exposed to VUV (7.2 eV). The ethylene groups are depleted by more than 75% while only about 40% methylene and methyl groups loss is observed. The different sensitivity of bridging groups to VUV light should be taken into account during the development of curing and plasma etch processes of low-k materials based on periodic mesoporous organosilicas and oxycarbosilanes. The experimental results are qualitatively supported by ab-initio quantum-chemical calculations

    Characterizing dark matter interacting with extra charged leptons

    Get PDF
    In the context of a simplified leptophilic dark matter (DM) scenario where the mediator is a new charged fermion carrying leptonic quantum number and the DM candidate is either scalar or vector, the complementarity of different bounds is analyzed. In this framework, the extra lepton and DM are odd under a Z2 symmetry, and hence the leptonic mediator can only interact with the DM state and Standard Model leptons of various flavors. We show that there is the possibility to characterize the DM spin (scalar or vector), as well as the nature of the mediator, through a combined analysis of cosmological, flavor and collider data. We present an explicit numerical analysis for a set of benchmarks points of the viable parameter space of our scenario

    Single cell mechanics: stress stiffening and kinematic hardening

    Full text link
    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the nonlinear rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Our results show, that in spite of cell complexity its mechanical properties can be cast into simple, well-defined rules, which provide mechanical cell strength and robustness via control of crosslink slippage.Comment: 4 pages, 6 figure

    Drift and Diffusion in Periodically Driven Renewal Processes

    Full text link
    We consider the drift and diffusion properties of periodically driven renewal processes. These processes are defined by a periodically time dependent waiting time distribution, which governs the interval between subsequent events. We show that the growth of the cumulants of the number of events is asymptotically periodic and develop a theory which relates these periodic growth coefficients to the waiting time distribution defining the periodic renewal process. The first two coefficients, which are the mean frequency and effective diffusion coefficient of the number of events are considered in greater detail. They may be used to quantify stochastic synchronization.Comment: 29 pages, 6 figures, submitted to Journal of Statistical Physic

    Liesegang patterns: Effect of dissociation of the invading electrolyte

    Full text link
    The effect of dissociation of the invading electrolyte on the formation of Liesegang bands is investigated. We find, using organic compounds with known dissociation constants, that the spacing coefficient, 1+p, that characterizes the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing dissociation constant, K_d. Theoretical arguments are developed to explain these experimental findings and to calculate explicitly the K_d dependence of 1+p.Comment: RevTex, 8 pages, 3 eps figure

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI≪GbG_I \ll G_b
    • …
    corecore