560 research outputs found

    Influence of fractional flow reserve on grafts patency: Systematic review and patient-level meta-analysis.

    Get PDF
    To investigate the impact of invasive functional guidance for coronary artery bypass graft surgery (CABG) on graft failure. Data on the impact of fractional flow reserve (FFR) in guiding CABG are still limited. Systematic review and individual patient data meta-analysis were performed. Primary objective was the risk of graft failure, stratified by FFR. Risk estimates are reported as odds ratios (ORs) derived from the aggregated data using random-effects models. Individual patient data were analyzed using mixed effect model to assess relationship between FFR and graft failure. This meta-analysis is registered in PROSPERO (CRD42020180444). Four prospective studies comprising 503 patients referred for CABG, with 1471 coronaries, assessed by FFR were included. Graft status was available for 1039 conduits at median of 12.0 [IQR 6.6; 12.0] months. Risk of graft failure was higher in vessels with preserved FFR (OR 5.74, 95% CI 1.71-19.29). Every 0.10 FFR units decrease in the coronaries was associated with 56% risk reduction of graft failure (OR 0.44, 95% CI 0.34 to 0.59). FFR cut-off to predict graft failure was 0.79. Surgical grafting of coronaries with functionally nonsignificant stenoses was associated with higher risk of graft failure

    Taenia solium Cysticercosis in the Democratic Republic of Congo: How Does Pork Trade Affect the Transmission of the Parasite?

    Get PDF
    Taenia solium is a parasite that can affect both humans and pigs, causing important economic losses in pig production and being the main cause of acquired epilepsy in endemic areas. However, the parasite has been neglected in many African countries and particularly in the Democratic Republic of Congo (DRC), where recent data are non-existent. The present study is part of a first initiative to assess whether cysticercosis is actually present in DRC and to estimate its potential economic and public health importance. Focusing our work on porcine cysticercosis, we demonstrated high prevalence figures of active infections in villages in a rural area of DRC and in markets in the city of Kinshasa. Moreover, the intensity of infection was higher in pigs sampled in villages as compared to pigs sampled on urban markets. Preliminary surveys conducted in parallel in both study sites suggest an effect of pork trade on the transmission of the parasite selecting highly infected pigs at village level

    Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA1c in obese type 2 diabetes patients

    Get PDF
    Aims/hypothesis: Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Methods: Fifty male obese type 2 diabetes patients (age 59∈±∈8 years, BMI 32∈± ∈4 kg/m2) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake left(VO2peak) (low to moderate intensity) or 40 min at 75% of VO2peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. Results: The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO2peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p∈<∈0. 05). No differences were observed between the groups training at low to moderate or moderate to high intensity. Conclusions/interpretation: When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. © 2009 Springer-Verlag

    The evolving impact of global, region-specific and country-specific uncertainty

    Get PDF
     This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Business & Economic Statistics on 30 Oct 2019, available online: https://doi.org/10.1080/07350015.2019.166879

    Micro-CT-scanning as a valuable source of data for musculoskeletal studies in biology

    Get PDF
    Over time, so-called classic biological studies (such as anatomical studies) have evolved into modern, highly integrated strategies tackling important questions in evolutionary biology. Where early morphologists limited themselves to descriptions based on dissections, non-invasive imaging techniques nowadays allow to uncover details of anatomy in a way that morphologists can go far beyond basic and descriptive anatomy, e.g. through modelling. In this presentation, an overview is presented on some on-going research projects that rely on X-ray tomography data, which focus on the adaptive evolution of musculoskeletal systems in different vertebrate lineages. Cases discussed are (1) a study on the cranial anatomical diversity and functional implications in the feeding apparatus in seahorses, (2) as well as multi-body modelling of the tail system in these fishes; and (3) structural diversity in Darwin’s finches in relation to high performance seed cracking. These cases clearly show the (still not fully explored) potential for testing specific hypotheses with respect to adaptive evolution, where X-ray tomography provides the tools to model experimental conditions that are impossible to achieve with live specimens (e.g. perfect control of specific parameters)

    Improving Augmented Reality Through Deep Learning: Real-time Instrument Delineation in Robotic Renal Surgery

    Get PDF
    Several barriers prevent the integration and adoption of augmented reality (AR) in robotic renal surgery despite the increased availability of virtual three-dimensional (3D) models. Apart from correct model alignment and deformation, not all instruments are clearly visible in AR. Superimposition of a 3D model on top of the surgical stream, including the instruments, can result in a potentially hazardous surgical situation. We demonstrate real-time instrument detection during AR-guided robot-assisted partial nephrectomy and show the generalization of our algorithm to AR-guided robot-assisted kidney transplantation. We developed an algorithm using deep learning networks to detect all nonorganic items. This algorithm learned to extract this information for 65 927 manually labeled instruments on 15 100 frames. Our setup, which runs on a standalone laptop, was deployed in three different hospitals and used by four different surgeons. Instrument detection is a simple and feasible way to enhance the safety of AR-guided surgery. Future investigations should strive to optimize efficient video processing to minimize the 0.5-s delay currently experienced. General AR applications also need further optimization, including detection and tracking of organ deformation, for full clinical implementation

    First-in-human real-time AI-assisted instrument deocclusion during augmented reality robotic surgery

    Get PDF
    The integration of Augmented Reality (AR) into daily surgical practice is withheld by the correct registration of pre-operative data. This includes intelligent 3D model superposition whilst simultaneously handling real and virtual occlusions caused by the AR overlay. Occlusions can negatively impact surgical safety and as such deteriorate rather than improve surgical care. Robotic surgery is particularly suited to tackle these integration challenges in a stepwise approach as the robotic console allows for different inputs to be displayed in parallel to the surgeon. Nevertheless, real-time de-occlusion requires extensive computational resources which further complicates clinical integration. This work tackles the problem of instrument occlusion and presents, to the authors' best knowledge, the first-in-human on edge deployment of a real-time binary segmentation pipeline during three robot-assisted surgeries: partial nephrectomy, migrated endovascular stent removal, and liver metastasectomy. To this end, a state-of-the-art real-time segmentation and 3D model pipeline was implemented and presented to the surgeon during live surgery. The pipeline allows real-time binary segmentation of 37 non-organic surgical items, which are never occluded during AR. The application features real-time manual 3D model manipulation for correct soft tissue alignment. The proposed pipeline can contribute towards surgical safety, ergonomics, and acceptance of AR in minimally invasive surgery.This works presents the first-in-human edge deployment of a real-time AI-enabled augmented reality (AR) pipeline in robotic surgery. The application uses a binary segmentation model to effectively identify over 37 classes of non-organic items in the surgical scene, and uses this information to create an overlay visualization, solving the instrument occlusion problem, and preventing the possibly hazardous situation this implies, as well as adding a sense of depth to the AR. The solution is used during three real surgeries and segmentation results, application performance as well as qualitative surgical feedback are discussed.###imag
    • 

    corecore