237 research outputs found

    Impact of methylene blue and atorvastatin combination therapy on the apparition of cerebral malaria in a murine model

    Get PDF
    BACKGROUND: Proveblue®, a methylene blue dye that complies with European Pharmacopoeia and contains limited organic impurities and heavy metals of recognized toxicity, showed in vitro synergy against Plasmodium falciparum when combined with atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase. The objective of this study was to evaluate the in vivo efficacy of Proveblue® when combined with atorvastatin in a murine model of experimental cerebral malaria. METHODS: Forty female C57Bl6/N mice were divided into four groups (control, atorvastatin 40 mg/kg for seven days, Proveblue® 10 mg/kg for five days and atorvastatin combined with Proveblue®), infected with Plasmodium berghei ANKA parasites by intraperitoneal inoculation and observed for 45 days. RESULTS: Treatment with atorvastatin alone did not demonstrate an effect significantly different from no treatment (p = 0.0573). All the mice treated by atorvastatin alone died. Treatment with Proveblue® or a combination of Proveblue® and atorvastatin was significantly increased survival of cerebral malaria (p = 0.0011 and 0.0002, respectively). Although there was only one death in the atorvastatin and Proveblue® combination treatment group (10%) versus two deaths (22%) with Proveblue® treatment, the effect on cerebral malaria was not significant (p = 0.283). CONCLUSIONS: The present work demonstrated, for the first time, the high efficacy of Proveblue® in preventing cerebral malaria. Atorvastatin alone or in combination appears to possess limited use for preventing cerebral malaria. Combination of atorvastatin with lower doses of Proveblue® (<10 mg/kg/day) should be evaluated to show potential synergistic effects in cerebral malaria prevention

    Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia

    Get PDF
    Decreased in vitro susceptibility to dihydroartemisinin (21.2 nM) and artesunate (16.3 nM) associated with decreased susceptibility or resistance to quinine (1131 nM), mefloquine (166 nM), lumefantrine (114 nM), pyronaridine (70.5 nM) and piperaquine (91.1 nM) is reported in a patient returning from South-East Asia after trekking along the Mekong from the south of Laos to the north of Thailand. Decreased in vitro susceptibility to artemisinin derivatives did not appear to be mediated by the number of copies of pfmdr1 or pfATPase6, pfcrt, pfmdr1 or pfmrp polymorphism. The high IC50 to mefloquine of this Asian isolate was not associated with pfmdr1 copy number. Pfnhe-1 microsatellite ms4760 showed a profile 7 (ms4760-7) with three repeats of DNNND and one repeat of DDDNHNDNHNN, which is associated with high quinine reduced susceptibility. The patient recovered in three days without relapse after treatment with the association of quinine and doxycycline. Decreased in vitro susceptibility to quinine and the delayed effect of doxycycline may both have contributed to the delayed parasite clearance time, D4 (0.5%) and D7 (0.004%). The in vitro data, with IC50 for dihydroartemisinin and artesunate were up to ten times those of the reference clone W2, which suggests that this isolate may be resistant to artemisinin derivatives, associated with a decreased susceptibility to quinine

    Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

    Get PDF
    Background: The aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag (R) system associated with the atmospheric generators for capnophilic bacteria Genbag CO2 (R) was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions. Methods: The susceptibility of 36 pre-identified parasite strains from a wide panel of countries was assessed for nine standard anti-malarial drugs (chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone and pyrimethamine) by the standard 42-hour H-3-hypoxanthine uptake inhibition method using the Genbag CO2 (R) system and compared to controlled incubator conditions (5% CO2 and 10% O-2). Results: The counts per minute values in the control wells in incubator atmospheric conditions (5% CO2 and 10% O-2) were significantly higher than those of Genbag (R) conditions (2738 cpm vs 2282 cpm, p < 0.0001). The geometric mean IC50 estimated under the incubator atmospheric conditions was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011) and higher for the quinolines: chloroquine (127 vs 94 nM, p < 0.0001), quinine (580 vs 439 nM, p < 0.0001), monodesethylamodiaquine (41.4 vs 31.8 nM, p < 0.0001), mefloquine (57.5 vs 49.7 nM, p = 0.0011) and lumefantrine (23.8 vs 21.2 nM, p = 0.0044). There was no significant difference of IC50 between the 2 conditions for dihydroartemisinin, doxycycline and pyrimethamine. To reduce this difference in term of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag (R) conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O-2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2000 nM). Conclusions: The atmospheric generators for capnophilic bacteria Genbag CO2 (R) is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance

    Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa

    Get PDF
    International audienceThe effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs) in this population that is particularly at risk because of their lack of immunity

    Quinine-Resistant Malaria in Traveler Returning from Senegal, 2007

    Get PDF
    We describe clinical and parasitologic features of in vivo and in vitro Plasmodium falciparum resistance to quinine in a nonimmune traveler who returned to France from Senegal in 2007 with severe imported malaria. Clinical quinine failure was associated with a 50% inhibitory concentration of 829 nmol/L. Increased vigilance is required during treatment follow-up

    Plasmodium falciparum proteome changes in response to doxycycline treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence of <it>Plasmodium falciparum </it>resistance to most anti-malarial compounds has highlighted the urgency to develop new drugs and to clarify the mechanisms of anti-malarial drugs currently used. Among them, doxycycline is used alone for malaria chemoprophylaxis or in combination with quinine or artemisinin derivatives for malaria treatment. The molecular mechanisms of doxycycline action in <it>P. falciparum </it>have not yet been clearly defined, particularly at the protein level.</p> <p>Methods</p> <p>A proteomic approach was used to analyse protein expression changes in the schizont stage of the malarial parasite <it>P. falciparum </it>following doxycycline treatment. A comparison of protein expression between treated and untreated protein samples was performed using two complementary proteomic approaches: two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and isobaric tagging reagents for relative and absolute quantification (iTRAQ).</p> <p>Results</p> <p>After doxycycline treatment, 32 and 40 <it>P. falciparum </it>proteins were found to have significantly deregulated expression levels by 2D-DIGE and iTRAQ methods, respectively. Although some of these proteins have been already described as being deregulated by other drug treatments, numerous changes in protein levels seem to be specific to doxycycline treatment, which could perturb apicoplast metabolism. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to confirm this hypothesis.</p> <p>Conclusions</p> <p>In this study, a specific response to doxycycline treatment was distinguished and seems to involve mitochondrion and apicoplast organelles. These data provide a starting point for the elucidation of drug targets and the discovery of mechanisms of resistance to anti-malarial compounds.</p

    Atorvastatin treatment is effective when used in combination with mefloquine in an experimental cerebral malaria murine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major complications of <it>Plasmodium falciparum </it>infection is cerebral malaria (CM), which causes one million deaths worldwide each year, results in long-term neurological sequelae and the treatment for which is only partially effective. Statins are recognized to have an immunomodulatory action, attenuate sepsis and have a neuroprotective effect. Atorvastatin (AVA) has shown in vitro anti-malarial activity and has improved the activity of mefloquine (MQ) and quinine.</p> <p>Methods</p> <p>The efficiency of 40 mg/kg intraperitoneal AVA, alone or in association with MQ, was assessed in an experimental <it>Plasmodium berghei </it>ANKA rodent parasite model of CM and performed according to different therapeutic schemes. The effects on experimental CM were assessed through the evaluation of brain histopathological changes and neuronal apoptosis by TUNEL staining.</p> <p>Results</p> <p>AVA alone in the therapeutic scheme show no effect on survival, but the prophylactic scheme employing AVA associated with MQ, rather than MQ alone, led to a significant delay in mouse death and had an effect on the onset of CM symptoms and on the level of parasitaemia. Histopathological findings show a correlation between brain lesions and CM onset. A neuronal anti-apoptotic effect of AVA in the AVA + MQ combination was not shown.</p> <p>Conclusions</p> <p>The combination of AVA and MQ therapy led to a significant delay in mouse mortality. There were differences in the incidence, time to cerebral malaria and the level of parasitaemia when the drug combination was administered to mice. When used in combination with MQ, AVA had a relevant effect on the in vivo growth inhibition and clinical outcome of <it>P. berghei </it>ANKA-infected mice.</p

    Malaria transmission in Dakar: A two-year survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to entomological studies conducted over the past 30 years, there was low malaria transmission in suburb of Dakar but little evidence of it in the downtown area. However; there was some evidence of local transmission based on reports of malaria among permanent residents. An entomological evaluation of malaria transmission was conducted from May 2005 to October 2006 in two areas of Dakar.</p> <p>Methods</p> <p>Mosquitoes were sampled by human landing collection during 34 nights in seven places in Bel-air area (238 person-nights) and during 24 nights in five places in Ouakam area (120 person-nights). Mosquitoes were identified morphologically and by molecular methods. The <it>Plasmodium falciparum </it>circumsporozoïte indexes were measured by ELISA, and the entomological inoculation rates (EIR) were calculated for both areas. Molecular assessments of pyrethroid knock down resistance (<it>Kdr</it>) and of insensitive acetylcholinesterase resistance were conducted.</p> <p>Results</p> <p>From May 2005 to October 2006, 4,117 and 797 <it>Anopheles gambiae s.l</it>. respectively were caught in Bel-air and Ouakam. Three members of the complex were present: <it>Anopheles arabiensis </it>(> 98%), <it>Anopheles melas </it>(< 1%) and <it>An. gambiae s.s</it>. molecular form M (< 1%). Infected mosquitoes were caught only during the wintering period between September and November in both places. In 2005 and 2006, annual EIRs were 9,5 and 4, respectively, in Bel-air and 3 and 3, respectively, in Ouakam. The proportion of host-seeking <it>An. gambiae s.l</it>. captured indoors were 17% and 51% in Bel air and Ouakam, respectively. Ace 1 mutations were not identified in both members of the <it>An. gambiae </it>complex. <it>Kdr </it>mutation frequency in <it>An. arabiensis </it>was 12% in Bel-air and 9% in Ouakam.</p> <p>Conclusion</p> <p>Malaria is transmitted in Dakar downtown area. Infected mosquitoes were caught in two subsequent years during the wintering period in two distant quarters of Dakar. These data agree with clinical data from a Senegalese military Hospital of Dakar (Hospital Principal) where most malaria cases occurred between October and December. It was the first detection of <it>An. melas </it>in Dakar.</p
    corecore