10 research outputs found

    Campylobacter jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-cultured With Human INT 407 and Caco-2 Epithelial Cells

    Get PDF
    Major foodborne bacterial pathogens, such as Campylobacter jejuni, have devised complex strategies to establish and foster intestinal infections. For more than two decades, researchers have used immortalized cell lines derived from human intestinal tissue to dissect C. jejuni-host cell interactions. Known from these studies is that C. jejuni virulence is multifactorial, requiring a coordinated response to produce virulence factors that facilitate host cell interactions. This study was initiated to identify C. jejuni proteins that contribute to adaptation to the host cell environment and cellular invasion. We demonstrated that C. jejuni responds to INT 407 and Caco-2 cells in a similar fashion at the cellular and molecular levels. Active protein synthesis was found to be required for C. jejuni to maximally invade these host cells. Proteomic and transcriptomic approaches were then used to define the protein and gene expression profiles of C. jejuni co-cultured with cells. By focusing on those genes showing increased expression by C. jejuni when co-cultured with epithelial cells, we discovered that C. jejuni quickly adapts to co-culture with epithelial cells by synthesizing gene products that enable it to acquire specific amino acids for growth, scavenge for inorganic molecules including iron, resist reactive oxygen/nitrogen species, and promote host cell interactions. Based on these findings, we selected a subset of the genes involved in chemotaxis and the regulation of flagellar assembly and generated C. jejuni deletion mutants for phenotypic analysis. Binding and internalization assays revealed significant differences in the interaction of C. jejuni chemotaxis and flagellar regulatory mutants. The identification of genes involved in C. jejuni adaptation to culture with host cells provides new insights into the infection process

    Male Use of Female Sex Work in India: A Nationally Representative Behavioural Survey

    Get PDF
    Heterosexual transmission of HIV in India is driven by the male use of female sex workers (FSW), but few studies have examined the factors associated with using FSW. This nationally representative study examined the prevalence and correlates of FSW use among 31,040 men aged 15–49 years in India in 2006. Nationally, about 4% of men used FSW in the previous year, representing about 8.5 million FSW clients. Unmarried men were far more likely than married men to use FSW overall (PR = 8.0), but less likely than married men to use FSW among those reporting at least one non-regular partner (PR = 0.8). More than half of all FSW clients were married. FSW use was higher among men in the high-HIV states than in the low-HIV states (PR = 2.7), and half of all FSW clients lived in the high-HIV states. The risk of FSW use rose sharply with increasing number of non-regular partners in the past year. Given the large number of men using FSW, interventions for the much smaller number of FSW remains the most efficient strategy for curbing heterosexual HIV transmission in India

    Characterization of Putative Sporulation and Germination Genes in <i>Clostridium perfringens</i> Food-Poisoning Strain SM101

    No full text
    Bacterial sporulation and spore germination are two intriguing processes that involve the expression of many genes coherently. Phylogenetic analyses revealed gene conservation among spore-forming Firmicutes, especially in Bacilli and Clostridia. In this study, by homology search, we found Bacillus subtilis sporulation gene homologs of bkdR, ylmC, ylxY, ylzA, ytaF, ytxC, yyaC1, and yyaC2 in Clostridium perfringenes food-poisoning Type F strain SM101. The β-glucuronidase reporter assay revealed that promoters of six out of eight tested genes (i.e., bkdR, ylmC, ytaF, ytxC, yyaC1, and yyaC2) were expressed only during sporulation, but not vegetative growth, suggesting that these genes are sporulation-specific. Gene knock-out studies demonstrated that C. perfringens ΔbkdR, ΔylmC, ΔytxC, and ΔyyaC1 mutant strains produced a significantly lower number of spores compared to the wild-type strain. When the spores of these six mutant strains were examined for their germination abilities in presence of known germinants, an almost wild-type level germination was observed with spores of ΔytaF or ΔyyaC1 mutants; and a slightly lower level with spores of ΔbkdR or ΔylmC mutants. In contrast, almost no germination was observed with spores of ΔytxC or ΔyyaC2 mutants. Consistent with germination defects, ΔytxC or ΔyyaC2 spores were also defective in spore outgrowth and colony formation. The germination, outgrowth, and colony formation defects of ΔytxC or ΔyyaC2 spores were restored when ΔytxC or ΔyyaC2 mutant was complemented with wild-type ytxC or yyaC2, respectively. Collectively, our current study identified new sporulation and germination genes in C. perfringens

    Identification of Germinants and Expression of Germination Genes in <i>Clostridium perfringens</i> Strains Isolated from Diarrheic Animals

    No full text
    In this study, we investigated the spore germination phenotype of Clostridium perfringens strains isolated from diarrheic animals (animal strains). The transcripts of germination-specific genes and their protein products were also measured. Our study found the following results: (i) animal strains spores germinated at a slower rate with AK (mixture of L-asparagine and KCl), L-cysteine, or L-lysine, but the extent of germination varied based on strains and germinants used; (ii) none of the amino acids (excluding L-cysteine and L-lysine) were identified as a universal germinant for spores of animal strains; (iii) animal strain spores germinated better at a pH range of 6.0–7.0; (iv) all tested germination-specific genes were expressed in animal strains; the levels of expression of major germinant receptor gene (gerKC) were higher and the cortex hydrolysis machinery genes (cspB and sleC) were lower in animal strains, compared to the food poisoning strain SM101; and (v) the levels of CspB and SleC were significantly lower in spores of animal strains compared to strain SM101, suggesting that these animal strains lack an efficient spore cortex hydrolysis machinery. In summary, our findings suggest that the poor or slow spore germination in C. perfringens animal strains might be due to incomplete spore cortex hydrolysis

    The Missing Pieces: The Role of Secretion Systems in <i>Campylobacter jejuni</i> Virulence

    No full text
    Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease
    corecore