15 research outputs found
Green synthesis of methoxy-poly(ethylene glycol)- block-poly(L-lactide-co-glycolide) copolymer using zinc proline as a biocompatible initiator for irinotecan delivery to colon cancer in vivo
Poly(lactic-co-glycolic acid) (PLGA) is the most commonly described biocompatible copolymer used in
biomedical applications. In this work, a green synthetic approach based on the biocompatible zinc proline
complex, as an initiator for PLGA synthesis, is reported for the first time for the synthesis of methoxy-poly
(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) (mPEG–PLGA). mPEG–PLGA with controlled
molecular weight and narrow polydispersity was synthesised. Its potential for delivery of irinotecan (Ir), a
poorly water-soluble chemotherapeutic drug used for the treatment of colon and pancreatic cancer, was
studied. Nanoparticles of controlled size (140–160 nm), surface charge (∼−10 mV), release properties and
cytotoxicity against CT-26 (colon) and BxPC-3 (pancreatic) cancer cells, were prepared. Tumor accumulation was confirmed by optical imaging of fluorescently labelled nanoparticles. Unlike Tween® 80
coated NP-Ir, the Pluronic® F-127 coated NP-Ir exhibits significant tumor growth delay compared to
untreated and blank formulation treated groups in the CT-26 subcutaneous tumor model, after 4 treatments of 30 mg irinotecan per kg dose. Overall, this proof-of-concept study demonstrates that the newly
synthesized copolymer, via a green route, is proven to be nontoxic, requires fewer purification steps and
has potential applications in drug deliver
Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations
The surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e., the drying process) faces several challenges, and overall mastering depends on the end step. The advent of new emerging technologies paved the way for commercialization. Thin film freezing (TFF) is a new emerging freeze-drying technique available for various treatment modalities in drug delivery. TFF has now been used for the commercialization of pharmaceuticals, food, and biopharmaceutical products. The present review highlights the fundamentals of TFF along with modulated techniques used for drying pharmaceuticals and biopharmaceuticals. Furthermore, we have covered various therapeutic applications of TFF technology in the development of nanoformulations, dry powder for inhalations and vaccines. TFF holds promise in delivering therapeutics for lung diseases such as fungal infection, bacterial infection, lung dysfunction, and pneumonia
Cyclodextrin-based dermatological formulations : dermopharmaceutical and cosmetic applications
The progress in new delivery systems for active ingredients has boosted the dermopharmaceutical and cosmetic fields by allowing formulations to display enhanced skin permeation capabilities. Cyclodextrins (CDs) are cyclic oligosaccharides able to form host-guest inclusion complexes with guest active molecules, resulting in improved physicochemical properties of such molecules. The incorporation of CDs in dermopharmaceutical and cosmetics formulations has received much attention since the late 1970 s by enhancing modulation of the passage through the skin and vectorization into the target site while simultaneously offering a biocompatible delivery system. This paper features the advantages of CDs in dermopharmaceutical and cosmetic applications, such as the improvement of the apparent solubility and the stability of the active ingredients, the possibility of masking unpleasant odors, among others that are be described, emphasizing that these versatile skin active ingredient carriers are strongly promising both in the treatment of skin diseases and in the improvement of cosmetic formulations
The Advancement of Herbal-Based Nanomedicine for Hair
Polymer, lipid, and natural protein-based hair care nanocarriers are in preclinical testing. Nanomedicine has enhanced therapeutic efficacy and decreased side effects. This review examines herbal nanomedicine for hair care. We also reviewed the hair cycle, its morphology, and the mechanisms of herbal-based medicine that regulate the hair cycle to treat hair loss. Nano-formulations have better solubility, permeability, therapeutic efficacy, and prolonged distribution than standard herbal medicines. This review also discussed the nanotechnology barrier and nano formulations for hair loss and growth and includes a recent herbal nanomedicine study. Researchers interested in using herbs to treat hair problems and clinically translating hair care products may find the results presented significant
A Comparative Study of Quercetin-Loaded Nanocochleates and Liposomes: Formulation, Characterization, Assessment of Degradation and In Vitro Anticancer Potential
Quercetin, a flavonoid, has antioxidant and anti-inflammatory properties and the potential to inhibit the proliferation of cancer, but its therapeutic efficacy is lowered due to poor solubility and bioavailability. Quercetin-loaded nanocochleates (QN) were developed using a trapping method by the addition of calcium ions into preformed negatively charged liposomes (QL) prepared by a thin-film hydration method. Liposomes were optimized by varying the concentration of Dimyristoyl phosphatidyl glycerol and quercetin by applying D-optimal factorial design using Design-Expert® software. Stable rods were observed using TEM with an average particle size, zeta potential and encapsulation efficiency of 502 nm, −18.52 mV and 88.62%, respectively, for QN which were developed from spherical QL showing 111.06 nm, −40.33 mV and 74.2%, respectively. In vitro release of quercetin from QN and QL was extended to 24 h. Poor bioavailability of quercetin is due to its degradation in the liver, so to mimic in vivo conditions, the degradation of quercetin released from QL and QN was studied in the presence of rat liver homogenate (S9G) and results revealed that QN, due to its unique structure, i.e., series of rolled up solid layers, shielded quercetin from the external environment and protected it. The safety and biocompatibility of QL and QN were provenby performing cytotoxicity studies on fibroblast L929 cell lines. QN showed superior anticancer activity compared to QL, as seen for human mouth cancerKB cell lines. Stability studies proved that nanocochleates were more stable than liposomal formulations. Thus, nanocochleates might serve as pharmaceutical nanocarriers for the improved efficacy of drugs with low aqueous solubility, poor bioavailability, poor targeting ability and stability
Formulation Development and Evaluation of Indian Propolis Hydrogel for Wound Healing
Flavonoids and polyphenolic compounds play a key role in wound healing cycle modulation. Propolis, a natural bee product, has been widely reported as an enriched source of polyphenols and flavonoids as important chemical constituents and for its wound healing potential. The goal of this study was to develop and characterize a propolis-based polyvinyl alcohol (PVA) hydrogel composition with wound healing potential. To understand the impacts of critical material attributes and process parameters, formulation development was carried out using a design of experiment approach. A preliminary phytochemical analysis of Indian propolis extract showed the presence of flavonoids (23.61 ± 0.0452 mg equivalent of quercetin/g) and polyphenols (34.82 ± 0.0785 mg equivalent of gallic acid/g), both of which aid in wound healing and skin tissue regeneration. The pH, viscosity, and in vitro release of the hydrogel formulation were also studied. The burn wound healing model results revealed significant (p < 0.0001) wound contraction by propolis hydrogel (93.58 + 0.15%) with rapid re-epithelialization relative to 5% w/w povidone iodine ointment USP (Cipladine®) (95.39 + 0.16%). The excision wound healing model confirms significant (p < 0.0001) wound contraction by propolis hydrogel (91.45 + 0.29%) with accelerated re-epithelialization comparable to 5% w/w povidone iodine ointment USP (Cipladine®) (94.38 + 0.21%). The developed formulation offers promise for wound healing, which may be investigated further for clinical research
A Systematic Overview of Eudragit<sup>®</sup> Based Copolymer for Smart Healthcare
Eudragit, synthesized by radical polymerization, is used for enteric coating, precise temporal release, and targeting the entire gastrointestinal system. Evonik Healthcare Germany offers different grades of Eudragit. The ratio of methacrylic acid to its methacrylate-based monomers used in the polymerization reaction defines the final product’s characteristics and consequently its potential range of applications. Since 1953, these polymers have been made to use in a wide range of healthcare applications around the world. In this review, we reviewed the “known of knowns and known of unknowns” about Eudragit, from molecule to material design, its characterization, and its applications in healthcare
Surface Functionalization of Nanofibers: The Multifaceted Approach for Advanced Biomedical Applications
Nanocarriers are gaining significant importance in the modern era of drug delivery. Nanofiber technology is one of the prime paradigms in nanotechnology for various biomedical and theranostic applications. Nanofibers obtained after successful electrospinning subjected to surface functionalized for drug delivery, biomedical, tissue engineering, biosensing, cell imaging and wound dressing application. Surface functionalization entirely changes physicochemical and biological properties of nanofibers. In physicochemical properties, wettability, melting point, glass transition temperature, and initial decomposition temperature significantly change offer several advantageous for nanofibers. Similarly, biological properties include cell adhesion, biocompatibility, and proliferation, also changes by functionalization of nanofibers. Various natural and synthetic materials polymers, metals, carbon materials, functional groups, proteins, and peptides, are currently used for surface modification of nanofibers. Various research studies across the globe demonstrated the usefulness of surface functionalized nanofibers in tissue engineering, wound healing, skin cancers, melanoma, and disease diagnosis. The delivery of drug through surface functionalized nanofibers results in improved permeation and bioavailability of drug which is important for better targeting of disease and therapeutic efficacy. This review provides a comprehensive insight about various techniques of surface functionalization of nanofibers along with its biomedical applications, toxicity assessment and global patent scenario