2,017 research outputs found

    Development of computer program NAS3D using Vector processing for geometric nonlinear analysis of structures

    Get PDF
    An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained

    Magnetization of Charge-ordered la(2-x)sr(x)nio(4+delta)

    Full text link
    We report magnetization measurements on La(2-x)Sr(x)NiO(4+ delta) single crystals, with 0 < x < 0.5. Glassy behaviour associated with the formation of spin-charge stripes, and a separate spin-glass phase at low temperatures were observed. We have also found a `memory effect' in the magnetic field -- temperature history, which is found to be suppressed in the low temperature spin state of the x = 0.33 crystal.Comment: 2 pages, 2 figures. Presented at ICM2003 to appear in J. Magn. Magn. Mat

    Magnetization of La(2-x)Sr(x)NiO(4+ delta) (0 < x < 0.5) and observation of novel memory effects

    Full text link
    We have studied the magnetization of a series of spin-charge ordered La(2-x)Sr(x)NiO(4+delta) single crystals with 0 < x < 0.5. For fields applied parallel to the ab plane there is a large irreversibility below a temperature T(F1) ~ 50 K and a smaller irreversibility that persists up to near the charge ordering temperature. We observed a novel memory effect in the thermo-remnant magnetization across the entire doping range. We found that these materials retain a memory of the temperature at which an external field was removed, and that there is a pronounced increase in the thermo-remnant magnetization when the system is warmed through a spin reorientation transition.Comment: 11 pages, 12 figure

    Spin reorientation transition in the incommensurate stripe-ordered phase of La3/2Sr1/2NiO4

    Full text link
    The spin ordering of La3/2Sr1/2NiO4 was investigated by magnetization measurements, and by unpolarized- and polarized-neutron diffraction. Spin ordering with an incommensurability epsilon ~ 0.445 is observed below T_so ~ 80 K. On cooling, a spin reorientation is observed at 57 +/- 1 K, with the spin axes rotating from 52 +/- 4 degrees to 78 +/- 3 degrees. This is the first time a spin reorientation has been observed in a La2-xSrxNiO4+delta compound having incommensurate stripe order.Comment: REVTex 4. 4 pages including 4 figures. Minor changes to text. Accepted to be published in Physical Review

    Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4 studied by inelastic neutron scattering

    Full text link
    We report measurements of the magnetic excitation spectrum of the layered antiferromagnet La2CoO4 by time-of-flight neutron inelastic scattering. In the energy range probed in our experiments (0-250 meV) the magnetic spectrum consists of spin-wave modes with strong in-plane dispersion extending up to 60 meV, and a nearly dispersionless peak at 190 meV. The spin-wave modes exhibit a small (~1 meV) dispersion along the magnetic zone boundary. We show that the magnetic spectrum can be described very well by a model of a Heisenberg antiferromagnet that includes the full spin and orbital degrees of freedom of Co2+ in an axially-distorted crystal field. The collective magnetic dynamics are found to be controlled by dominant nearest-neighbour exchange interactions, strong XY-like single-ion anisotropy and a substantial unquenched orbital angular momentum.Comment: 8 pages, 7 figure

    Magnetic Order and Dynamics in Stripe-Ordered La2-xSrxNiO4

    Full text link
    We have studied magnetic correlations in several compositions of stripe-ordered La2-xSrxNiO4. In this paper we show how polarized-neutron scattering has helped uncover important features of the magnetic ordering and spin dynamics. In particular, polarization analysis has enabled us (1) to characterize a spin reorientation transition, (2) to identify anisotropy gaps in the spin excitation spectrum, and (3) to investigate an anomalous dip in the spin-wave intensity suggestive of coupling between collective spin and charge excitations.Comment: 4 pages, 3 figs. Presented at PNSXM, Venice. To appear in Physica

    Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2_2Ti2_2O7_7 in Magnetic Field

    Full text link
    The frustrated pyrochlore magnet Yb2_2Ti2_2O7_7 has the remarkable property that it orders magnetically, but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe in addition to dispersive magnons also a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low and high field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set we re-evaluate the spin Hamiltonian finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.Comment: 5 pages main text + 19 pages supplemental materia
    • …
    corecore