3 research outputs found

    Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic

    No full text
    Svalbard fjords are facing a significant increase in Atlantic water inflow, which influences all ecosystem components, thus the objective of this study was to assess how recent Atlantification impacts the functioning of zooplankton community. For this purpose, two year-round operating sediment traps and associated hydrographic instruments, providing continuous time series of zooplankton and sediment fluxes, were deployed in the Atlantic-influenced Kongsfjorden and the typical high Arctic fjord Rijpfjorden. We used multivariate statistical methods to analyze how environmental variables, including the sediment fluxes, influence the zooplankton communities in the fjords. We found out that sedimentation rates were an order of magnitude higher in Kongsfjorden (reaching 39.7 g m−2 d−1 in December) and increased in autumn, while in Rijpfjorden, they peaked in late winter - early spring (2.9 g m−2 d−1 in February). Such sediment flux patterns might result from the redeposition of sediments from shallower, subtidal areas and were probably connected to autumn/winter storms. According to multivariate analyses, zooplankton in Kongsfjorden were significantly influenced by water temperature, which explained 22% of their variation, and the flux of organic and mineral sediments explaining 15% and 7.8%, respectively; while in Rijpfjorden, it was sea ice (25.3%), water temperature (16.2%), salinity (8.1%), and mineral sedimentation (6.3%). The structure of zooplankton communities in both fjords was similar in winter; in Kongsfjorden, zooplankton kept developing through spring and summer, while in the Arctic Rijpfjorden, the community paused until the onset of phytoplankton bloom and sea ice break-up in summer, to finally achieve, in autumn, a similar species and development stage structure as summer in the Atlantic-influenced fjord. Our study demonstrates how integrating multiple pieces of information can provide key insights into the relations between Atlantification, sediment flux, and zooplankton community, thus helping to assess the functioning of high Arctic ecosystems under climate change conditions

    Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic

    Get PDF
    Svalbard fjords are facing a significant increase in Atlantic water inflow, which influences all ecosystem components, thus the objective of this study was to assess how recent Atlantification impacts the functioning of zooplankton community. For this purpose, two year-round operating sediment traps and associated hydrographic instruments, providing continuous time series of zooplankton and sediment fluxes, were deployed in the Atlantic-influenced Kongsfjorden and the typical high Arctic fjord Rijpfjorden. We used multivariate statistical methods to analyze how environmental variables, including the sediment fluxes, influence the zooplankton communities in the fjords. We found out that sedimentation rates were an order of magnitude higher in Kongsfjorden (reaching 39.7 g m−2 d−1 in December) and increased in autumn, while in Rijpfjorden, they peaked in late winter - early spring (2.9 g m−2 d−1 in February). Such sediment flux patterns might result from the redeposition of sediments from shallower, subtidal areas and were probably connected to autumn/winter storms. According to multivariate analyses, zooplankton in Kongsfjorden were significantly influenced by water temperature, which explained 22% of their variation, and the flux of organic and mineral sediments explaining 15% and 7.8%, respectively; while in Rijpfjorden, it was sea ice (25.3%), water temperature (16.2%), salinity (8.1%), and mineral sedimentation (6.3%). The structure of zooplankton communities in both fjords was similar in winter; in Kongsfjorden, zooplankton kept developing through spring and summer, while in the Arctic Rijpfjorden, the community paused until the onset of phytoplankton bloom and sea ice break-up in summer, to finally achieve, in autumn, a similar species and development stage structure as summer in the Atlantic-influenced fjord. Our study demonstrates how integrating multiple pieces of information can provide key insights into the relations between Atlantification, sediment flux, and zooplankton community, thus helping to assess the functioning of high Arctic ecosystems under climate change conditions

    The Interannual Changes in the Secondary Production and Mortality Rate of Main Copepod Species in the Gulf of Gdańsk (The Southern Baltic Sea)

    No full text
    The main objective of this paper was description of seasonal and interannual trends in secondary production and mortality rates of the three most important Copepoda taxa in the Gulf of Gdańsk (southern Baltic Sea). Samples were collected monthly from six stations located in the western part of the Gulf of Gdańsk during three research periods: 1998−2000, 2006−2007, and 2010−2012. Production was calculated based on copepod biomass and mortality rates estimated according to vertical life table approach. Redundancy analysis was used to investigate relationship between secondary production and environmental conditions. During the entire research period there was significant interannual and seasonal variability of secondary production, mortality rate, as well as abundance and biomass anomalies. Conducted analysis revealed positive correlation between increasing temperature and production of Acartia spp. and Temora longicornis developmental stages, while older copepodites of Pseudocalanus acuspes showed almost negative correlation with temperature. The mortality rate estimations obtained for Acartia spp. were the highest in summer, while Temora longicornis peaked in spring−summer period. The lowest mortality rate estimations were noted in autumn and winter for almost all stages of investigated taxa
    corecore