657 research outputs found

    Documenting work through videos. A project by Officina Emilia with nine engineering firms in the province of Modena (2008-2010)

    Get PDF
    In order to meet the need of representing labour in the workshop, Officina Emilia has concentrated on work in the small mechanical factories. The aim is to spread - among teachers, young persons and their families, local administrators and people who work at various levels in the local institutions - a knowledge of what the world of engineering production entails and of the people employed in it, and to investigate in depth the nexus between innovation and production, knowledge and learning places. Research, analysis and transmission of knowledge would need to be mobilized on a very large scale to find answers to the questions as to the current nature of jobs and what workers do in mechanical factories. Through the OE_Imprese project, Officina Emilia has set a preliminary aim: to contribute to opening the discussion, to signal the need to find answers, to better formulate the questions, to articulate the knowledge of the variety of cases, situations and contexts in which workers operate today. A multidisciplinary working group has set up instruments to facilitate the preliminary stages of collection and analysis of the documentation of the firms, and has selected the video as a suitable tool for gathering documentation for the research and the construction effective teaching instruments. In this paper (in a bilingual version Italian/English) we present two video productions made in the OE_Imprese project: a series of videointerviews with 35 workers (in Italian with subtitles in English), and a videoinstallation to narrate firms and workers in the Modena engineering district. The videos were made in the period November 2008-January 2009, by Filippo Tantillo and Sara Pozzoli. The collaboration between Officina Emilia and the firms of the territory emerges from the need to investigate and make visible the intermesh between production and innovation that formerly characterized the district, and that still today represents an aspect peculiar to engineering production in the Modena area, projecting it into the future, mapping out the paths of transformation

    Opportunities and challenges for the nasal administration of nanoemulsions

    Full text link
    © 2015 Bentham Science Publishers. Nasal delivery has become a growing area of interest for drug administration as a consequence of several practical advantages, such as ease of administration and non-invasiveness. Moreover, the avoidance of hepatic first-pass metabolism and rapid and efficient absorption across the permeable nasal mucosa offer a promising alternative to other traditional administration routes, such as oral or parenteral delivery. In fact, nasal delivery has been proposed for a number of applications, including local, systemic, direct nose-to-brain and mucosal vaccine delivery. Nanoemulsions, due to their stability, small droplet size and optimal solubilization properties, represent a versatile formulation approach suitable for several administration routes. Nanoemulsions demonstrated great potential in nasal drug delivery, increasing the absorption and the bioavailability of many drugs for systemic and nose-tobrain delivery. Furthermore, they act as an active component, i.e. an adjuvant, in nasal mucosal vaccinations, displaying the ability to induce robust mucosal immunity, high serum antibodies titres and a cellular immune response avoiding inflammatory response. Interestingly, nanoemulsions have not been proposed for the treatment of local ailments of the nose. Despite the promising results in vitro and in vitro, the application of nanoemulsions for nasal delivery in humans appears mainly hindered by the lack of detailed toxicology studies to determine the effect of these formulations on the nasal mucosa and cilia and the lack of extensive clinical trials

    Emotional Intelligence and risk taking in investment decision-making

    Get PDF
    Previous work on investment decision-making suggested that emotions prevent investors from taking risks and from investing in a rational way, whereas other work found that there is great variability in people’s ability to manage and use emotional feedbacks. We hypothesized that people with high trait emotional intelligence should be more willing, than people with low trait emotional intelligence, to accept risks when making an investment. Data supported a model in which trait emotional intelligence predicted willingness to invest both when the expected value is positive and when it is negative. The effect of trait emotional intelligence was significant even controlling for other variables, like attitude toward economic risk and money attitude. We believe that these results help improving the understanding of how emotions influence investors’ behavior and show that their role is not always detrimental but depends on the interplay between individual differences and situational factors

    Optimization of RPMI 2650 Cells as a Model for Nasal Mucosa

    Full text link
    In the past few years, a human nasal epithelial cell line derived from septum carcinoma (RPMI 2650) has been proposed as a potential in vitro model for screening nasally delivered drugs. However, these studies have left some unanswered questions in terms of the validation of the in vitro model. In particular, no clear agreement was found with respect to several parameters, such as the seeding density, the time for switching cell culture from liquid covered culture (LCC) to air liquid interface (ALI) conditions, or the day at which cell cultures have to be used for transport experiments, when these cells are cultured in vitro. Hence, the aim of this study was to expand on the previous in vitro cell models to better define the fundamental parameters to be used as a tool for studying drug deposition and transport through the nasal mucosa

    Impact of Cooking on Bioactive Compounds and Antioxidant Activity of Pigmented Rice Cultivars

    Get PDF
    Pigmented rice cultivars, namely Venere and Artemide, are a source of bioactive molecules, in particular phenolics, including anthocyanins, exerting a positive effect on cardiovascular systems thanks also to their antioxidant capacity. This study aimed to determine the total phenol index (TPI), total flavonoids (TF), total anthocyanins (TA) and in vitro antioxidant capacity in 12 batches of Venere cultivar and two batches of Artemide cultivar. The rice was cooked using different methods (boiling, microwave, pressure cooker, water bath, rice cooker) with the purpose to individuate the procedure limiting the loss of bioactive compounds. TPI, TF and TA were spectrophotometrically determined in both raw and cooked rice samples. Rice samples of Artemide cultivars were richer in TPI (17.7-18.8 vs. 8.2-11.9 g gallic acid/kg in Venere rice), TF (13.1 vs. 5.0-7.1 g catechin/kg rice for Venere rice) and TA (3.2-3.4 vs. 1.8-2.9 g Cy-3glc/kg for Venere rice) in comparison to those of Venere cultivar; as well, they showed higher antioxidant capacity (46.6-47.8 vs. 14.4-31.9 mM Trolox/kg for Venere rice). Among the investigated cooking methods, the rice cooker and the water bath led to lower and comparable losses of phenolics. Interestingly, the cooking water remaining after cooking with the rice cooker was rich in phenolics. The consumption of a portion of rice (100 g) cooked with the rice cooker with its own cooking water can supply 240 mg catechin and 711 mg cyanidin 3-O-glucoside for Venere rice and 545 mg catechin and 614 mg cyanidin 3-O-glucoside for Artemide rice, with a potential positive effect on health

    Anti-Inflammatory Properties of Statin-Loaded Biodegradable Lecithin/Chitosan Nanoparticles: A Step Toward Nose-to-Brain Treatment of Neurodegenerative Diseases

    Get PDF
    Nasal delivery has been indicated as one of the most interesting alternative routes for the brain delivery of neuroprotective drugs. Nanocarriers have emerged as a promising strategy for the delivery of neurotherapeutics across the nasal epithelia. In this work, hybrid lecithin/chitosan nanoparticles (LCNs) were proposed as a drug delivery platform for the nasal administration of simvastatin (SVT) for the treatment of neuroinflammatory diseases. The impact of SVT nanoencapsulation on its transport across the nasal epithelium was investigated, as well as the efficacy of SVT-LCNs in suppressing cytokines release in a cellular model of neuroinflammation. Drug release studies were performed in simulated nasal fluids to investigate SVT release from the nanoparticles under conditions mimicking the physiological environment present in the nasal cavity. It was observed that interaction of nanoparticles with a simulated nasal mucus decreased nanoparticle drug release and/or slowed drug diffusion. On the other hand, it was demonstrated that two antibacterial enzymes commonly present in the nasal secretions, lysozyme and phospholipase A2, promoted drug release from the nanocarrier. Indeed, an enzyme-triggered drug release was observed even in the presence of mucus, with a 5-fold increase in drug release from LCNs. Moreover, chitosan-coated nanoparticles enhanced SVT permeation across a human cell model of the nasal epithelium (×11). The nanoformulation pharmacological activity was assessed using an accepted model of microglia, obtained by activating the human macrophage cell line THP-1 with the Escherichia coli-derived lipopolysaccharide (LPS) as the pro-inflammatory stimulus. SVT-LCNs were demonstrated to suppress the pro-inflammatory signaling more efficiently than the simple drug solution (-75% for IL-6 and -27% for TNF-α vs. -47% and -15% at 10 µM concentration for SVT-LCNs and SVT solution, respectively). Moreover, neither cellular toxicity nor pro-inflammatory responses were evidenced for the treatment with the blank nanoparticles even after 36 h of incubation, indicating a good biocompatibility of the nanomedicine components in vitro. Due to their biocompatibility and ability to promote drug release and absorption at the biointerface, hybrid LCNs appear to be an ideal carrier for achieving nose-to-brain delivery of poorly water-soluble drugs such as SVT

    Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Get PDF
    The Asian summer monsoon involves complex transport patterns with large-scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry–climate model ECHAM5–HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species peroxyacetyl nitrate (PAN), NOχ_{χ} and HNO3_{3} from various monsoon regions, to the UTLS over southern Asia and vice versa. Simulated long-term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June–September) in order to evaluate the model’s ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere (UT). Remote transport also occurs in the extratropical UT where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. Sensitivity experiments with ECHAM5–HAMMOZ for simultaneous NOχ_{χ} and nonmethane volatile organic compounds (NMVOCs) emission change (-10 %) over ASM, NAM and WAM confirm similar transport. Our analysis shows that a 10% change in Asian emissions transports ~5–30 ppt of PAN in the UTLS over Asia, ~1–10 ppt of PAN in the UTLS of northern subtropics and mid-latitudes, ~7–10 ppt of HNO3_{3} and ~1–2 ppb of ozone in UT over Asia. Comparison of emission change over Asia, North America and Africa shows that the highest transport of HNO3_{3} and ozone occurs in the UT over Asia and least over Africa. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOχ_{χ} . This also affects the distribution of PAN in the UTLS. Simulations with and without lightning show an increase in the concentrations of PAN (~40 %), HNO3_{3} (75%), NOχ_{χ} (70 %) and ozone (30 %) over the regions of convective transport. Lightning-induced production of these species is higher over equatorial Africa and America compared to the ASM region. This indicates that the contribution of anthropogenic emissions to PAN in the UTLS over the ASM is higher than that of lightning

    From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth

    Get PDF
    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain

    In vitro characterization of physico-chemical properties, cytotoxicity, bioactivity of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate nasal powder formulation

    Get PDF
    An innovative lyophilized dry powder formulation consisting of urea-crosslinked hyaluronic acid (HA-CL) and sodium ascorbyl phosphate (SAP) – LYO HA-CL – SAP- was prepared and characterized in vitro for physico-chemical and biological properties. The aim was to understand if LYO HA-CL – SAP could be used as adjuvant treatment for nasal inflammatory diseases. LYO HA-CL – SAP was suitable for nasal delivery and showed to be not toxic on human nasal septum carcinoma-derived cells (RPMI 2650 cells) at the investigated concentrations. It displayed porous, polygonal particles with unimodal, narrow size distribution, mean geometric diameter of 328.3 ± 27.5 µm, that is appropriate for nasal deposition with no respirable fraction and 88.7% of particles with aerodynamic diameter >14.1 µm. Additionally, the formulation showed wound healing ability on RPMI 2650 cells, and reduced interleukin-8 (IL-8) level in primary nasal epithelial cells pre-induced with lipopolysaccharide (LPS). Transport study across RPMI 2650 cells showed that HA-CL could act not only as carrier for SAP and active ingredient itself, but potentially also as mucoadhesive agent. In conclusion, these results suggest that HA-CL and SAP had anti-inflammatory activity and acted in combination to accelerate wound healing. Therefore, LYO HA-CL – SAP could be a potential adjuvant in nasal anti-inflammatory formulations

    Scanning Electron Microscope Cytochemistry of Blood Cells

    Get PDF
    The backscattered electron imaging (BEI) mode of scanning electron microscopy (SEM) has been applied to study various histo-cytochemical reactions in biological specimens since the early seventies. Due to numerous, recent technical improvements the BEI mode of SEM now belongs to the routine of many SEM laboratories. For cytochemistry, BEI has been mainly used to: visualize intracellular structures and organelles; recognize the different cell types in heterogeneous populations or tissues; study the correlations between enzymatic activities and cell surface features. We have evaluated the most relevant results obtained in the study of blood cells and the possible future applications of these techniques
    • …
    corecore