88 research outputs found

    Junín Virus Infection of Human Hematopoietic Progenitors Impairs In Vitro Proplatelet Formation and Platelet Release via a Bystander Effect Involving Type I IFN Signaling

    Get PDF
    Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV), a member of the arenaviridae family. Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection. Like in other viral hemorrhagic fevers (VHF), AHF patients present with fever and hemorrhagic complications. Although the causes of the bleeding are poorly understood, impaired hemostasis, endothelial cell dysfunction and low platelet counts have been described. Thrombocytopenia is a common feature in VHF syndromes, and it is a major sign for its diagnosis. However, the underlying pathogenic mechanism has not yet been elucidated. We hypothesized that thrombocytopenia results from a viral-triggered alteration of the megakaryo/thrombopoiesis process. Therefore, we evaluated the impact of JUNV on megakaryopoiesis using an in vitro model of human CD34+ cells stimulated with thrombopoietin. Our results showed that CD34+ cells are infected with JUNV in a restricted fashion. Infection was transferrin receptor 1 (TfR1)-dependent and the surface expression of TfR1 was higher in infected cultures, suggesting a novel arenaviral dissemination strategy in hematopoietic progenitor cells. Although proliferation, survival, and commitment in JUNV-infected cultures were normal, viral infection impaired thrombopoiesis by decreasing in vitro proplatelet formation, platelet release, and P-selectin externalization via a bystander effect. The decrease in platelet release was also TfR1-dependent, mimicked by poly(I:C), and type I interferon (IFN α/β) was implicated as a key paracrine mediator. Among the relevant molecules studied, only the transcription factor NF-E2 showed a moderate decrease in expression in megakaryocytes from either infected cultures or after type I IFN treatment. Moreover, type I IFN-treated megakaryocytes presented ultrastructural abnormalities resembling the reported thrombocytopenic NF-E2−/− mouse phenotype. Our study introduces a potential mechanism for thrombocytopenia in VHF and other diseases associated with increased bone marrow type I IFN levels

    Detection of Hepatocyte Growth Factor (HGF) Ligand-c-MET Receptor Activation in Formalin-Fixed Paraffin Embedded Specimens by a Novel Proximity Assay

    Get PDF
    Aberrant activation of membrane receptors frequently occurs in human carcinomas. Detection of phosphorylated receptors is commonly used as an indicator of receptor activation in formalin-fixed paraffin embedded (FFPE) tumor specimens. FFPE is a standard method of specimen preparation used in the histological analysis of solid tumors. Due to variability in FFPE preparations and the labile nature of protein phosphorylation, measurements of phospho-proteins are unreliable and create ambiguities in clinical interpretation. Here, we describe an alternative, novel approach to measure receptor activation by detecting and quantifying ligand-receptor complexes in FFPE specimens. We used hepatocyte growth factor (HGF)-c-MET as our model ligand-receptor system. HGF is the only known ligand of the c-MET tyrosine kinase receptor and HGF binding triggers c-MET phosphorylation. Novel antibody proximity-based assays were developed and used to detect and quantify total c-MET, total HGF, and HGF-c-MET ligand-receptor interactions in FFPE cell line and tumor tissue. In glioma cells, autocrine activation of c-MET by HGF-c-MET increased basal levels of c-MET phosphorylation at tyrosine (Tyr) 1003. Furthermore, HGF-c-MET activation in glioma cell lines was verified by Surface Protein-Protein Interaction by Crosslinking ELISA (SPPICE) assay in corresponding soluble cell lysates. Finally, we profiled levels o

    The clinical and functional significance of c-Met in breast cancer: a review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.CMH-Y is funded by a Cancer Research UK Clinical Research Fellowship. JLJ is funded by the Breast Cancer Campaign Tissue Bank

    Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer

    Get PDF
    Recent evidence suggests that Runt-related transcription factors play a role in different human tumours. In the present study, the localisation of the Runt-related transcription factor-2 (Runx2), its transcriptional activity, as well as its regulation of expression was analysed in human pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time PCR and immunohistochemistry were used for Runx2 expression and localisation analysis. Runt-related transcription factor-2 expression was silenced using specific siRNA oligonucleotides in pancreatic cancer cells (Panc-1) and immortalised pancreatic stellate cells (IPSCs). Overexpression of Runx2 was achieved using a full-length expression vector. TGF-β1, BMP2, and other cytokines were assessed for their potential to regulate Runx2 expression. There was a 6.1-fold increase in median Runx2 mRNA levels in PDAC tissues compared to normal pancreatic tissues (P<0.0001). Runt-related transcription factor-2 was localised in pancreatic cancer cells, tubular complexes, and PanIN lesions of PDAC tissues as well as in tumour-associated fibroblasts/stellate cells. Coculture of IPSCs and Panc-1 cells, as well as treatment with TGF-β1 and BMP2, led to increased Runx2 expression in Panc-1 cells. Runt-related transcription factor-2 overexpression was associated with decreased MMP1 release as well as decreased growth and invasion of Panc-1 cells. These effects were reversed by Runx2 silencing. In conclusion, Runx2 is overexpressed in PDAC, where it is regulated by certain cytokines such as TGF-β1 and BMP2 in an auto- and paracrine manner. In addition, Runx2 has the potential to regulate the transcription of extracellular matrix modulators such as SPARC and MMP1, thereby influencing the tumour microenvironment

    The App-Runx1 Region Is Critical for Birth Defects and Electrocardiographic Dysfunctions Observed in a Down Syndrome Mouse Model

    Get PDF
    Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf) and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1). In addition cardiac connexins (Cx40, Cx43) and sodium channel sub-units (Scn5a, Scn1b, Scn10a) were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people

    Run Away or Stick Together? The Impact of Organization-Specific Adverse Events on Alliance Partner Defection

    Get PDF
    Alliances are inter-organizational relationships wherein partners agree to engage in joint action and share benefits and burdens. But when might an adverse event that strikes one partner become too burdensome for another partner? Extant theories of alliance instability provide incomplete answers, which is problematic: for stricken organizations, anticipating whether their non-stricken partners will remain in the alliance can be essential for survival. Integrating insights from alliance dynamics and organizational stigma literatures, we theorize how an organization-specific adverse event affects a non-stricken partner's decision to continue with or defect from an alliance by considering factors that shift the balance between cohesive and disruptive forces. We propose that high stigmatization risk will increase the probability of partner defection through two disruptive mechanisms: relational uncertainty and stigma anxiety. Building on the idea that the same factors contributing to alliance formation may also condition partner defection, we theorize about the roles of partner resource interdependencies, relational embeddedness, and perceived partner similarity in amplifying or attenuating disruptive mechanisms triggered by an adverse event. We extend the research on partner defection and alliance instability by advancing an event-based view of alliance instability and specifying the conditions under which an alliance partner might defect

    Shoot for the Stars? Predicting the Recruitment of Prestigious Directors at Newly Public Firms

    Get PDF

    How firms respond to financial restatement: CEO successors and external reactions

    Get PDF
    Although past studies have paid considerable attention to firms' reputations, few have investigated the actions that firms take following a reputation-damaging event. We identify firms involved in financial earnings restatements and examine whether naming a successor CEO with specific qualities serves to signal the seriousness of a firm's efforts to restore its reputation. Using theories of market signaling, we argue that attributes of successor CEOs significantly influence the reactions of key external constituencies. In particular, firms with more severe restatement tend to name successors who have prior CEO or turnaround experience and a more elite education. The naming of such successors results in more positive reactions from the stock market, financial analysts, and mass media. We argue that these attributes send messages to stakeholders and the broader public about the CEO's credibility and the firm's efforts

    Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer

    Get PDF
    Nuclear receptor tyrosine kinases (nRTKs) are aberrantly upregulated in many types of cancers, but the regulation of nRTK remains unclear. We previously showed androgen deprivation therapy (ADT) induces nMET in castration-resistant prostate cancer (CRPC) specimens. Through gene expression microarray profiles reanalysis, we identified that nMET signaling requires ARF for CRPC growth in Pten/Trp53 conditional knockout mouse model. Accordingly, aberrant MET/nMET elevation correlates with ARF in human prostate cancer (PCa) specimens. Mechanistically, ARF elevates nMET through binding to MET cytoplasmic domain to stabilize MET. Furthermore, carbon nanodots resensitize cancer cells to MET inhibitors through DNA damage response. The inhibition of phosphorylation by carbon nanodots was identified through binding to phosphate group of phospho-tyrosine via computational calculation and experimental assay. Thus, nMET is essential to precision therapy of MET inhibitor. Our findings reveal for the first time that targeting nMET axis by carbon nanodots can be a novel avenue for overcoming drug resistance in cancers especially prostate cancer
    corecore