6,764 research outputs found

    X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables

    Full text link
    Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ~8% for systems with high accretion rates and low white-dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA

    Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell

    Full text link
    We discuss the space-and-time-dependent Monte Carlo code we have developed to simulate the relativistic radiation output from compact astrophysical objects, coupled to a Fokker-Planck code to determine the self-consistent lepton populations. We have applied this code to model the emission from a magnetized neutron star accretion shell near the Alfven radius, reprocessing the radiation from the neutron sar surface. We explore the parameter space defined by the accretion rate, stellar surface field and the level of wave turbulence in the shell. Our results are relevant to the emission from atoll sources, soft-X-ray transient X-ray binaries containing weakly magnetized neutron stars, and to recently suggested models of accretion-powered emission from anomalous X-ray pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted for publication in ApJ. Extended introduction and discussio

    Accretion column disruption in GX 1+4

    Get PDF
    Daily observations of the binary X-ray pulsar GX 1+4 were made with the Rossi X-ray Timing Explorer (RXTE) satellite between 1997 May 16-20 as part of a four-month monitoring program. On May 17 the sharp dips normally observed in the lightcurve were all but absent, resulting in a pulse fraction f_p approx. 0.5 instead of the more typical value of approx. 0.8 measured before and after. Also observed was a dramatic hardening of the 2-40 keV phase-averaged spectrum. The power-law photon index was 1.16 +/- 0.02, whereas values of 1.6-2.0 are more typical. In terms of a Comptonization continuum component, the optical depth for scattering was tau approx 19, with 4-6 the usual range for RXTE spectra (Galloway 2000). Pulse-phase spectrosopy indicates that tau is decreased relative to the phase-averaged value around the primary minimum, where an increase is normally observed. The reduced depth of the dip is interpreted as disruption of the accretion column, and the accompanying spectral variation suggests a substantially different accretion regime than is usual for this source.Comment: 10 pages, 2 figures, minor abstract typo and wording of final paragraph correcte

    The profile of a narrow line after single scattering by Maxwellian electrons: relativistic corrections to the kernel of the integral kinetic equation

    Full text link
    The frequency distribution of photons in frequency that results from single Compton scattering of monochromatic radiation on thermal electrons is derived in the mildly relativistic limit. Algebraic expressions are given for (1) the photon redistribution function, K(nu,Omega -> nu',Omega'), and (2) the spectrum produced in the case of isotropic incident radiation, P(nu -> nu'). The former is a good approximation for electron temperatures kT_e < 25 keV and photon energies hnu < 50 keV, and the latter is applicable when hnu(hnu/m_ec^2) < kT_e < 25 keV, hnu < 50 keV. Both formulae can be used for describing the profiles of X-ray and low-frequency lines upon scattering in hot, optically thin plasmas, such as present in clusters of galaxies, in the coronae of accretion disks in X-ray binaries and AGNs, during supernova explosions, etc. Both formulae can also be employed as the kernels of the corresponding integral kinetic equations (direction-dependent and isotropic) in the general problem of Comptonization on thermal electrons. The K(nu,Omega -> nu',Omega') kernel, in particular, is applicable to the problem of induced Compton interaction of anisotropic low-frequency radiation of high brightness temperature with free electrons in the vicinity of powerful radiosources and masers. Fokker-Planck-type expansion (up to fourth order) of the integral kinetic equation with the P(nu -> nu') kernel derived here leads to a generalization of the Kompaneets equation. We further present (1) a simpler kernel that is necessary and sufficient to derive the Kompaneets equation and (2) an expression for the angular function for Compton scattering in a hot plasma, which includes temperature and photon energy corrections to the Rayleigh angular function.Comment: 29 pages, 17 figures, accepted for publication in ApJ, uses emulateapj.sty, corrects misprints in previous astro-ph versio

    Backward asymmetry of the Compton scattering by an isotropic distribution of relativistic electrons: astrophysical implications

    Full text link
    The angular distribution of low-frequency radiation after single scattering by an isotropic distribution of relativistic electrons considerably differs from the Rayleigh angular function. In particular, the scattering by an ensemble of ultra-relativistic electrons obeys the law p=1-cos(alpha), where alpha is the scattering angle; hence photons are preferentially scattered backwards. We discuss some consequences of this fact for astrophysical problems. We show that a hot electron-scattering atmosphere is more reflective than a cold one: the fraction of incident photons which become reflected having suffered a single scattering event can be larger by up to 50 per cent in the former case. This should affect the photon exchange between cold accretion disks and hot coronae or ADAF flows in the vicinity of relativistic compact objects; as well as the rate of cooling (through multiple inverse-Compton scattering of seed photons supplied from outside) of optically thick clouds of relativistic electrons in compact radiosources. The forward-backward scattering asymmetry also causes spatial diffusion of photons to proceed slower in hot plasma than in cold one, which is important for the shapes of Comptonization spectra and the time delays between soft and hard radiations coming from variable X-ray sources.Comment: 20 pages, 3 figures, to appear in Astronomy Letters, added reference

    Heating of gas inside radio sources to mildly relativistic temperatures via induced Compton scattering

    Get PDF
    Measured values of the brightness temperature of low-frequency synchrotron radiation emitted by powerful extragalactic sources reach 10^11--10^12 K. If some amount of nonrelativistic ionized gas is present within such sources, it should be heated as a result of induced Compton scattering of the radiation. If this heating is counteracted by cooling due to inverse Compton scattering of the same radio radiation, then the plasma can be heated up to mildly relativistic temperatures kT~10--100 keV. The stationary electron velocity distribution can be either relativistic Maxwellian or quasi-Maxwellian (with the high-velocity tail suppressed), depending on the efficiency of Coulomb collisions and other relaxation processes. We derive several easy-to-use approximate expressions for the induced Compton heating rate of mildly relativistic electrons in an isotropic radiation field, as well as for the stationary distribution function and temperature of electrons. We also give analytic expressions for the kernel of the integral kinetic equation (one as a function of the scattering angle and another for the case of an isotropic radiation field), which describes the redistribution of photons in frequency caused by induced Compton scattering in thermal plasma. These expressions can be used in the parameter range hnu<< kT<~ 0.1mc^2 (the formulae earlier published in Sazonov, Sunyaev, 2000 are less accurate).Comment: 22 pages, 7 figures, submitted to Astronomy Letter

    Effects of broadening and electron overheating in tunnel structures based on metallic clusters

    Full text link
    We study the influence of energy levels broadening and electron subsystem overheating in island electrode (cluster) on current-voltage characteristics of three-electrode structure. A calculation scheme for broadening effect in one-dimensional case is suggested. Estimation of broadening is performed for electron levels in disc-like and spherical gold clusters. Within the two-temperature model of metallic cluster and by using a size dependence of the Debye frequency the effective electron temperature as a function of bias voltage is found approximately. We suggest that the effects of broadening and electron overheating are responsible for the strong smoothing of current-voltage curves, which is observed experimentally at low temperatures in structures based on clusters consisting of accountable number of atoms.Comment: 8 pages, 5 figure

    Vertical Structure of the Outer Accretion Disk in Persistent Low-Mass X-Ray Binaries

    Get PDF
    We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E10E\gtrsim10\,keV exerts a significant influence on the vertical structure of the accretion disk at a distance R1010R\gtrsim10^{10}\,cm from the neutron star. At a distance R1011R\sim10^{11}\,cm, where the total surface density in the disk reaches Σ020\Sigma_0\sim20\,g\,cm2^{-2}, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature Tatm(2÷3)×106T_{atm}\sim(2\div3)\times10^6\,K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a 10\gtrsim10\,% accuracy in the range of X-ray photon energies E<20E<20\,keV.Comment: 19 pages, 8 figures, published in Astronomy Letter

    Neuroprotective effects of a 40% ethanol extract of the black walnut bark (Juglans nigra L.)

    Get PDF
    Neuroprotection is a promising area of adjuvant therapy of ischemic brain lesions. At the same time, among potentially effective neuroprotectors, herbal remedies are distinguished due to their high efficiency and safety of use. In this work, some aspects of the neuroprotective effect of 40% ethanol extract of black walnut bark were investigated in comparison with its major component juglon

    Pharmacological characteristics of intranasal dosage forms containing Ginkgo biloba extracts

    Get PDF
    To evaluate specific pharmacological activity of the developed dosage forms of ginkgo bilob
    corecore