5 research outputs found

    A taxonomic revision of the genus Holoarctia Ferguson, 1984 (Arctiidae)

    No full text
    Volume: 20Start Page: 45End Page: 6

    Butterfly species' responses to urbanization : differing effects of human population density and built-up area

    Get PDF
    Good knowledge on how increasing urbanization affects biodiversity is essential in order to preserve biodiversity in urban green spaces. We examined how urban development affects species richness and total abundance of butterflies as well as the occurrence and abundance of individual species within the Helsinki metropolitan area in Northern Europe. Repeated butterfly counts in 167 separate 1-km-long transects within Helsinki covered the entire urbanization gradient, quantified by human population density and the proportion of built-up area (within a 50-m buffer surrounding each butterfly transect). We found consistently negative effects of both human population density and built-up area on all studied butterfly variables, though butterflies responded markedly more negatively to increasing human population density than to built-up area. Responses in butterfly species richness and total abundance showed higher variability in relation to proportion of built-up area than to human density, especially in areas of high human density. Increasing human density negatively affected both the abundance and the occurrence of 47% of the 19 most abundant species, whereas, for the proportion of built-up area, the corresponding percentages were 32% and 32%, respectively. Species with high habitat specificity and low mobility showed higher sensitivity to urbanization (especially high human population density) than habitat generalists and mobile species that dominated the urban butterfly communities. Our results suggest that human population density provides a better indicator of urbanization effects on butterflies compared to the proportion of built-up area. The generality of this finding should be verified in other contexts and taxonomic groups.peerReviewe

    Increasing range mismatching of interacting species under global change is related to their ecological characteristics

    No full text
    Aim We investigate the importance of interacting species for current and potential future species distributions, the influence of their ecological characteristics on projected range shifts when considering or ignoring interacting species, and the consistency of observed relationships across different global change scenarios

    The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies

    No full text
    The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes

    Climate change reshuffles northern species within their niches

    Get PDF
    Climate change is a pervasive threat to biodiversity. While range shifts are a known consequence of climate warming contributing to regional community change, less is known about how species' positions shift within their climatic niches. Furthermore, whether the relative importance of different climatic variables prompting such shifts varies with changing climate remains unclear. Here we analysed four decades of data for 1,478 species of birds, mammals, butterflies, moths, plants and phytoplankton along a 1,200 km high latitudinal gradient. The relative importance of climatic drivers varied non-uniformly with progressing climate change. While species turnover among decades was limited, the relative position of species within their climatic niche shifted substantially. A greater proportion of species responded to climatic change at higher latitudes, where changes were stronger. These diverging climate imprints restructure a full biome, making it difficult to generalize biodiversity responses and raising concerns about ecosystem integrity in the face of accelerating climate change.The authors analyse four decades of distribution data for various taxonomic groups to understand the shift of species within their climatic niches and the changing influences of different climate factors. The diverse and diverging climate imprints raise concerns about future ecosystem integrity
    corecore