145 research outputs found

    XXXI. Osmotic pressure

    Get PDF
    n/

    Aggregation of frictional particles due to capillary attraction

    Full text link
    Capillary attraction between identical millimeter sized spheres floating at a liquid-air interface and the resulting aggregation is investigated at low Reynolds number. We show that the measured capillary forces between two spheres as a function of distance can be described by expressions obtained using the Nicolson approximation at low Bond numbers for far greater particle sizes than previously assumed. We find that viscous hydrodynamics interactions between the spheres needs to be included to describe the dynamics close to contact. We then consider the aggregates formed when a third sphere is added after the initial two spheres are already in contact. In this case, we find that linear superposition of capillary forces describes the observed approach qualitatively but not quantitatively. Further, we observe an angular dependence of the structure due to a rapid decrease of capillary force with distance of separation which has a tendency to align the particles before contact. When the three particles come in contact, they may preserve their shape or rearrange to form an equilateral triangle cluster - the lowest energy state - depending on the competition between attraction between particles and friction. Using these observations, we demonstrate that a linear particle chain can be built from frictional particles with capillary attraction.Comment: accepted for Physical Review

    Radius of a Photon Beam with Orbital Angular Momentum

    Full text link
    We analyze the transverse structure of the Gouy phase shift in light beams carrying orbital angular momentum and show that the Gouy radius rGr_G characterizing the transverse structure grows as 2p++1\sqrt{2p+|\ell|+1} with the nodal number pp and photon angular momentum number \ell. The Gouy radius is shown to be closely related to the root-mean-square radius of the beam, and the divergence of the radius away from the focal plane is determined. Finally, we analyze the rotation of the Poynting vector in the context of the Gouy radius.Comment: 11 page

    The general relativistic Poynting-Robertson effect

    Full text link
    The general relativistic version is developed for Robertson's discussion of the Poynting-Robertson effect that he based on special relativity and Newtonian gravity for point radiation sources like stars. The general relativistic model uses a test radiation field of photons in outward radial motion with zero angular momentum in the equatorial plane of the exterior Schwarzschild or Kerr spacetime.Comment: 19 pages iop style, 8 eps figure files for 5 figure

    The song of the dunes as a self-synchronized instrument

    Full text link
    Since Marco Polo (1) it has been known that some sand dunes have the peculiar ability of emitting a loud sound with a well defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature (2). It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche (3), and not to an acoustic excitation of the grains but to their relative motion (4-7). By comparing several singing dunes and two controlled experiments, one in the laboratory and one in the field, we here demonstrate that the frequency of the sound is the frequency of the relative motion of the sand grains. The sound is produced because some moving grains synchronize their motions. The existence of a velocity threshold in both experiments further shows that this synchronization comes from an acoustic resonance within the flowing layer: if the layer is large enough it creates a resonance cavity in which grains self-synchronize.Comment: minor changes, essentially more references

    Does the Radiative Avalanche Fueling Work in Any Active Galactic Nuclei ?

    Get PDF
    Recently Umemura, Fukue, & Mineshige (1997) proposed the radiative avalanche fueling to active galactic nuclei; gas accretion is driven by radiation drag exerted by stellar radiation from circumnuclear starburst regions. This mechanism is also interesting in terms of starburst-AGN connections. We therefore present observational tests for the radiative avalanche fueling. Our tests, however, show that gas accretion rates driven by the radiative avalanche are significantly lower than those expected from the standard accretion theory applied for typical active galactic nuclei with the circumnuclear starburst regions. Instead we propose an alternative, possible starburst-AGN connection; a minor merger with a nucleated satellite drives circumnuclear starbursts and then leads to gas fueling onto the central engine as the merger proceeds.Comment: 12 page

    Minority youth, crime, conflict, and belonging in Australia

    Full text link
    In recent decades, the size and diversity of the minority population of contemporary western societies has increased significantly. To the critics of immigration, minority youth have been increasingly linked to crime, criminal gangs, anti-social behaviour, and riots. In this article, we draw on fieldwork conducted in Sydney, Australia's largest and most ethnically diverse city, to probe aspects of the criminality, anti-social behaviour, national identity, and belonging of ethnic minority youth in Australia. We conclude that the evidence on minority youth criminality is weak and that the panic about immigrant youth crime and immigrant youth gangs is disproportionate to the reality, drawing on and in turn creating racist stereotypes, particularly with youth of 'Middle Eastern appearance'. A review of the events leading up to the Sydney Cronulla Beach riots of December 2005 suggests that the underlying cause of the riots were many years of international, national, and local anti-Arab, anti-Muslim media discourse, and political opportunism, embedded in changing but persistent racist attitudes and practises. Our argument is that such inter-ethnic conflict between minority and majority youth in Sydney is the exception, not the rule. Finally, we draw on a hitherto unpublished survey of youth in Sydney to explore issues of national identity and belonging among young people of diverse ethnic and religious background. We conclude that minority youth in Sydney do not live 'parallel lives' but contradictory, inter-connected cosmopolitan lives. They are connected to family and local place, have inter-ethnic friendships but are often disconnected to the nation and the flag. © 2009 Springer Science+Business Media B.V

    Bring a plate: facilitating experimentation in the Welcome Dinner Project

    Get PDF
    Drawing on in-depth empirical research, we explore a project called The Welcome Dinner (WDP). The WDP aims to bring together ‘newly arrived’ people and ‘established Australians’ to meet and ‘share stories’ over a potluck meal in ‘the comfort of their own home’. The purpose is to create meaningful connections, new friendships and social solidarities. In this paper, we focus on the micro-contexts of the dinners and the minute activities and techniques that facilitators use in hosting. Our aim is not to analyse the effects of the project but rather the design and meaning of the activities. As a form of ‘designed everyday multiculturalism’, focused on welcoming new arrivals to Australia, it takes effort, skill and labour to manage the contact between different cultural groups over organised meals. Thus, facilitators take over the hosting of the lunches and dinners to run activities, which are imagined to lubricate social dynamics and relations, and produce convivial commensal affects and behaviours. Drawing on theories of training activities as embodied and cognitive experimentations, which enable new knowledge practices and social relations, we analyse field notes and interviews about the facilitation, structure and activities at the WDP home dinners

    Influence of fast interstellar gas flow on dynamics of dust grains

    Full text link
    The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle's orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle's orbit constitute a system of equations that determines the evolution of the particle's orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar system is also investigated. We consider icy particles with radii from 1 to 10 micrometers. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 10^5 to 2 x 10^6 years, approximately.Comment: 22 pages, 3 figures; Accepted for publication in Celestial Mechanics and Dynamical Astronom
    corecore