19 research outputs found

    Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection.

    Get PDF
    Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO) pretreatment of colonic epithelial cells (Caco-2) led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses

    Forehead carbuncle with intractable headache

    Get PDF

    100K Pathogen Genome Project: 306 Listeria Draft Genome Sequences for Food Safety and Public Health.

    Get PDF
    Listeria monocytogenes is a food-associated bacterium that is responsible for food-related illnesses worldwide. This is the initial public release of 306 L. monocytogenes genome sequences as part of the 100K Pathogen Genome Project. These isolates represent global genomic diversity in L. monocytogenes

    Large-Scale Release of Campylobacter Draft Genomes: Resources for Food Safety and Public Health from the 100K Pathogen Genome Project.

    Get PDF
    Campylobacter is a food-associated bacterium and a leading cause of foodborne illness worldwide, being associated with poultry in the food supply. This is the initial public release of 202 Campylobacter genome sequences as part of the 100K Pathogen Genome Project. These isolates represent global genomic diversity in the Campylobacter genus

    Draft Genome Sequences of 1,183 Salmonella Strains from the 100K Pathogen Genome Project.

    Get PDF
    Salmonella is a common food-associated bacterium that has substantial impact on worldwide human health and the global economy. This is the public release of 1,183 Salmonella draft genome sequences as part of the 100K Pathogen Genome Project. These isolates represent global genomic diversity in the Salmonella genus

    Molecular gene signature and prognosis of non-small cell lung cancer

    No full text
    The current staging system for non-small cell lung cancer (NSCLC) is inadequate for predicting outcome. Risk score, a linear combination of the values for the expression of each gene multiplied by a weighting value which was estimated from univariate Cox proportional hazard regression, can be useful. The aim of this study is to analyze survival-related genes with TaqMan Low-Density Array (TLDA) and risk score to explore gene-signature in lung cancer. A total of 96 NSCLC specimens were collected and randomly assigned to a training (n = 48) or a testing cohort (n = 48). A panel of 219 survival-associated genes from published studies were used to develop a 6-gene risk score. The risk score was used to classify patients into high or low-risk signature and survival analysis was performed. Cox models were used to evaluate independent prognostic factors. A 6-gene signature including ABCC4, ADRBK2, KLHL23, PDS5A, UHRF1 and ZNF551 was identified. The risk score in both training (HR = 3.14, 95% CI: 1.14-8.67, p = 0.03) and testing cohorts (HR = 5.42, 95% CI: 1.56-18.84, p = 0.01) was the independent prognostic factor. In merged public datasets including GSE50081, GSE30219, GSE31210, GSE19188, GSE37745, GSE3141 and GSE31908, the risk score (HR = 1.50, 95% CI: 1.25-1.80, p < 0.0001) was also the independent prognostic factor. The risk score generated from expression of a small number of genes did perform well in predicting overall survival and may be useful in routine clinical practice

    Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection

    No full text
    Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO) pretreatment of colonic epithelial cells (Caco-2) led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses
    corecore