79 research outputs found

    A Process-Oriented Software Architecture Reconstruction Taxonomy

    Get PDF
    International audienceTo maintain and understand large applications, it is cru- cial to know their architecture. The first problem is that architectures are not explicitly represented in the code as classes and packages are. The second problem is that suc- cessful applications evolve over time so their architecture inevitably drifts. Reconstructing and checking whether the architecture is still valid is thus an important aid. While there is a plethora of approaches and techniques supporting architecture reconstruction, there is no comprehensive state of the art and it is often difficult to compare the ap- proaches. This article presents a first state of the art in soft- ware architecture reconstruction, with the desire to support the understanding of the field

    Temperature influence on water transport in hardened cement pastes

    Get PDF
    International audienceDescribing water transport in concrete is an important issue for the durability assessment of radioactive wastemanagement reinforced concrete structures. Due to the waste thermal output such structures would besubmitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature onwater transport within hardened cement pastes of four different formulations. Using a simplified approach(describing only the permeation of liquid water) we characterized the properties needed to describe watertransport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presentedand discussed

    Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Get PDF
    International audienceWithin the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO 2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated

    Micro-Mechanical Analysis of Corrosion Products Formed During Long-Term Carbonation Induced Corrosion of Steel

    Get PDF
    During corrosion distinct types of corrosion products form, composed of different ratios of ferrous ions and oxide, hydroxides. Corrosion products have different physical and mechanical properties, mainly density, resistivity, volume and modulus of elasticity compared to iron. Knowing properties of corrosion products is indispensable for service life modelling of structures and can give valuable insight into the long-term corrosion propagation process. In this study micro-indentation method was used to evaluate mechanical properties of different layers formed during long-term carbonation induced corrosion of steel in concrete. Investigation was performed on three sets of reinforced concrete samples, that underwent corrosion during 50, 60 and 70 years. Raman microspectroscopy was performed locally to determine and locate the constitutive phases of the corrosion system and to correlate them to the results of micro-indentation. Using grid technique, spatial distribution of phases with different mechanical properties was obtained for samples of different age. Comparison of values of mechanical properties for the same phases obtained on different samples, allowed hypothesis on their long-term behaviour

    Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution

    Get PDF
    International audienceThis article presents a new model which aims at the prediction of the expansion induced by Alkali Silica Reaction (ASR) and the description of the chemical evolution of affected concretes. It is based on the description of the transport and reaction of alkalis and calcium ions within a Relative Elementary Volume (REV). It takes into account the influence of the reactive aggregate size grading on ASR, i.e. the effect of the simultaneous presence of different sized reactive aggregates within concrete. The constitutive equations are detailed and fitted using experimental results. Results from numerical simulations are presented and compared with experiments.Cet article présente un modèle qui a pour but la prédiction du gonflement induit par la réaction alcali-silice et la description de l'évolution chimique des bétons affectés. Il est basé sur la description du transport et de la réaction des alcalins et des ions calcium dans un Volume Elémentaire Représentatif. Il permet notamment de tenir compte de l'influence de la granulométrie réactive, c'est-à-dire de l'influence de la présence simultanée de granulats réactifs de différentes tailles dans le béton. Les équations constitutives du modèle sont détaillées puis calées à partir de résultats expérimentaux. Les résultats des simulations numériques sont présentés et comparés aux valeurs expérimentales

    Probabilistic and predictive performance-based approach for assessing reinforced concrete structures lifetime: The applet project

    Get PDF
    International audienceConcrete deterioration results in different damage extents, from cracking to concrete spalling, from losses of reinforcement cross-sections to bond losses. A relevant prediction of this performance is the basis for a successful management of the concrete structures. Conversely, the large amount of uncertainties related to parameters and models require a specific analysis in order to provide relevant results. The APPLET project intends to develop a probabilistic and predictive performance-based approach by quantifying the various sources of variability (material and structure), studying the interaction between environmental aggressive agents and the concrete material, ensuring a transfer of the physical-chemical models at the material scale towards models at the structure level, including and understanding in a better manner the corrosion process, integrating interface models between reinforcement and concrete, proposing relevant numerical models, integrating know-how from monitoring or inspection. To provide answers, a consortium of 19 partners has been established and has promoted a research project funded by the French Research Science Agency (ANR). Started in May 2007, the project has ended in November 2010. This paper will resume the most significant advances targeted by this research project

    Impact of carbonation on unsaturated water transport properties of cement-based materials

    Get PDF
    International audienceIn unsaturated conditions, the durability of concrete structures is strongly dependent on the evolution of the amount of free water within concrete porosity. Reliable durability assessment of concrete structures in relation to their environment thus requires accurate unsaturated water transport description as well as reliable input data. The effect of carbonation on water transport remains poorly studied and data are lacking. It was then the purpose of this article to acquire all the data needed to describe unsaturated water transport in carbonated cementitious materials (porosity, water retention and unsaturated permeability). Four hardened pastes made with four different binders were carbonated at 3% CO2 to ensure representativeness with natural carbonation. Beyond the modification of the water retention curve and porosity clogging, significant microcracking due to carbonation shrinkage was observed. The consequence on permeability highlighted a competition between porosity clogging and microcracking that was dependent on the initial mineralogical composition

    Steel corrosion in different alkali-activated mortars

    Get PDF
    One of the potential alternatives to Ordinary Portland Cement (OPC) are Alkali-Activated Materials (AAMs) [1]. The service life of reinforced concrete structures greatly depends on the corrosion resistance of embedded steel reinforcement. Due to the wide range of AAMs with their diverse properties, corrosion processes of steel in these materials are relatively unknown. Corrosion monitoring methods or their interpretations in certain cases cannot be directly transferred from the ones for OPC materials, and therefore results of different corrosion studies are sometimes contradictory [2]. The chemical composition of pore solution in different AAMs are influencing the results of electrochemical measurements and their interpretation, e.g. the presence of sulphides reduces the redox potential of the pore solution, but enables the steel to remain in an apparently passive state [3]. The aim of this paper is to compare electrochemical parameters measured on steel reinforcement in different alkali-activated and OPC mortars. Ordinary carbon steel reinforcing bar was installed in three different alkali-activated mortar mixtures, based on fly ash, slag or metakaolin. Specimens were exposed to wet/dry cycles with saline solution and periodic measurements of electrochemical impedance spectroscopy (EIS). Measured parameters were analyzed and compared to the ones measured in reference OPC mortar. The propagation of corrosion damages on embedded steel bars was also followed using x-ray computed microtomography (MicroCT). In addition to corrosion tests, information on pore water chemistry was obtained, as well as general mechanical and physical properties of tested AAMs. In certain specimens also Electrical Resistance (ER) probes were implemented, which can successfully detect corrosion initiation and monitor general corrosion rate [4]. It was concluded that EIS method can follow the evolution of corrosion processes on steel reinforcement in AAMs, although the caution is needed when interpreting the results. The additional use of the MicroCT can provide verification of ongoing results obtained by electrochemical methods, and deeper insight in corrosion processes in AAMs. [1] J.L. Provis, Cem. Concr. Res. (2017). [2] M. Criado, C. Monticelli, S. Fajardo, D. Gelli, V. Grassi, J.M. Bastidas, Constr. Build. Mater. 35 (2012) 30–37. [3] M. Criado, S.A. Bernal, P. Garcia-Triñanes, J.L. Provis, J. Mater. Sci. (2017) 1–20. [4] A. Česen, T. Kosec, A. Legat, Corros. Sci. 75 (2013) 47–57

    Experimental investigation of the variability of concrete durability properties

    Get PDF
    One of the main objectives of the APPLET project was to quantify the variability of concrete properties to allow for a probabilistic performance-based approach regarding the service lifetime prediction of concrete structures. The characterization of concrete variability was the subject of an experimental program which included a significant number of tests allowing the characterization of durability indicators or performance tests. Two construction sites were selected from which concrete specimens were periodically taken and tested by the different project partners. The obtained results (mechanical behavior, chloride migration, accelerated carbonation, gas permeability, desorption isotherms, porosity) are discussed and a statistical analysis was performed to characterize these results through appropriate probability density functions

    Single-cell proteomics defines the cellular heterogeneity of localized prostate cancer

    Get PDF
    Localized prostate cancer exhibits multiple genomic alterations and heterogeneity at the proteomic level. Single-cell technologies capture important cell-to-cell variability responsible for heterogeneity in biomarker expression that may be overlooked when molecular alterations are based on bulk tissue samples. This study aims to identify prognostic biomarkers and describe the heterogeneity of prostate cancer and the associated microenvironment by simultaneously quantifying 36 proteins using single-cell mass cytometry analysis of over 1.6 million cells from 58 men with localized prostate cancer. We perform this task, using a high-dimensional clustering pipeline named Franken to describe subpopulations of immune, stromal, and prostate cells, including changes occurring in tumor tissues and high-grade disease that provide insights into the coordinated progression of prostate cancer. Our results further indicate that men with localized disease already harbor rare subpopulations that typically occur in castration-resistant and metastatic disease
    corecore