6,394 research outputs found

    Molecular Differentiation of Alfalfa Weevil Strains (Coleoptera: Curculionidae)

    Get PDF
    Mitochondrial DNA was amplified and sequenced from eastern, western, and Egyptian strains of alfalfa weevil, Hypera postica (Gyllenhal). Eastern and Egyptian weevils differed at only 2 nucleotide sites in 1,031 base pairs sequenced; western weevils differed by 5% sequence divergence. Three restriction sites were identified which separated eastern and western haplotypes. No intrastrain polymorphism was detected in 150 weevils from Nebraska. Collections from Lincoln in eastern Nebraska and Scottsbluff in western Nebraska were fixed for the eastern and western haplotypes, respectively. Eastern and western haplotypes were found together in the same fields in a broad overlap region in central Nebraska

    Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?

    Full text link
    We perform ab initio plane wave supercell density functional calculations on three candidate models of the (3 x 2) reconstruction of the beta-SiC(001) surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is unambiguously favored for all reasonable values of Si chemical potential. We then use structures derived from the TAADM parent to model the silicon lines that are observed when the (3 x 2) reconstruction is annealed (the (n x 2) series of reconstructions), using a tight-binding method. We find that as we increase n, and so separate the lines, a structural transition occurs in which the top addimer of the line flattens. We also find that associated with the separation of the lines is a large decrease in the HOMO-LUMO gap, and that the HOMO state becomes quasi-one-dimensional. These properties are qualititatively and quantitatively different from the electronic properties of the original (3 x 2) reconstruction.Comment: 22 pages, including 6 EPS figure

    Commuting self-adjoint extensions of symmetric operators defined from the partial derivatives

    Get PDF
    We consider the problem of finding commuting self-adjoint extensions of the partial derivatives {(1/i)(\partial/\partial x_j):j=1,...,d} with domain C_c^\infty(\Omega) where the self-adjointness is defined relative to L^2(\Omega), and \Omega is a given open subset of R^d. The measure on \Omega is Lebesgue measure on R^d restricted to \Omega. The problem originates with I.E. Segal and B. Fuglede, and is difficult in general. In this paper, we provide a representation-theoretic answer in the special case when \Omega=I\times\Omega_2 and I is an open interval. We then apply the results to the case when \Omega is a d-cube, I^d, and we describe possible subsets \Lambda of R^d such that {e^(i2\pi\lambda \dot x) restricted to I^d:\lambda\in\Lambda} is an orthonormal basis in L^2(I^d).Comment: LaTeX2e amsart class, 18 pages, 2 figures; PACS numbers 02.20.Km, 02.30.Nw, 02.30.Tb, 02.60.-x, 03.65.-w, 03.65.Bz, 03.65.Db, 61.12.Bt, 61.44.B

    Beating patterns of filaments in viscoelastic fluids

    Full text link
    Many swimming microorganisms, such as bacteria and sperm, use flexible flagella to move through viscoelastic media in their natural environments. In this paper we address the effects a viscoelastic fluid has on the motion and beating patterns of elastic filaments. We treat both a passive filament which is actuated at one end, and an active filament with bending forces arising from internal motors distributed along its length. We describe how viscoelasticity modifies the hydrodynamic forces exerted on the filaments, and how these modified forces affect the beating patterns. We show how high viscosity of purely viscous or viscoelastic solutions can lead to the experimentally observed beating patterns of sperm flagella, in which motion is concentrated at the distal end of the flagella

    Mapping sites of gibberellin biosynthesis in the Arabidopsis root tip

    Get PDF
    ● Root elongation depends on the action of the gibberellin (GA) growth hormones, which promote cell production in the root meristem and cell expansion in the elongation zone. Sites of GA biosynthesis in the roots of 7 day-old Arabidopsis thaliana seedlings were investigated using tissue-specific GA inactivation in wild type (Col-0) or rescue of GA-deficient dwarf mutants. ● Tissue specific GA-depletion was achieved by ectopic expression of the GA-inactivating enzyme AtGA2ox2, which is specific for C19-GAs, and AtGA2ox7, which acts on C20-GA precursors. In addition, tissue-specific rescue of ga20ox triple and ga3ox double mutants was shown. Furthermore, GUS reporter lines for major GA20ox, GA3ox and GA2ox genes were used to observe their expression domains in the root. ● The effects of expressing these constructs on the lengths of the root apical meristem and cortical cells in the elongation zone confirmed that roots are autonomous for GA biosynthesis, which occurs in multiple tissues, with the endodermis a major site of synthesis. ● The results are consistent with the early stages of GA biosynthesis within the root occurring in the meristematic region and indicate that the penultimate step of GA biosynthesis, GA 20-oxidation, is required in both the meristem and elongation zone

    Vesicle shape, molecular tilt, and the suppression of necks

    Full text link
    Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of +2+2 are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.Comment: 10 pages, 7 figures, submitted to Phy. Rew.

    A systematic review of the relationship between rigidity/flexibility and transdiagnostic cognitive and behavioral processes that maintain psychopathology

    Get PDF
    An ever-growing number of transdiagnostic processes that maintain psychopathology across disorders have been identified. However, such processes are not consistently associated with psychological distress and symptoms. An understanding of what makes such processes pathological is required. One possibility is that individual differences in rigidity in the implementation of these processes determine the degree of psychopathology. The aim of this article is to examine the relationship between rigidity/flexibility and transdiagnostic maintenance processes. Initial searches were made for research examining relationships between 18 transdiagnostic processes and rigidity/flexibility. Relationships between rumination, perfectionism, impulsivity and compulsivity, and rigidity/flexibility were systemically reviewed; 50 studies met inclusion criteria. The majority of studies indicated that transdiagnostic cognitive and behavioral maintenance processes and rigidity were correlated, co-occurring, or predictive of each other. Findings are consistent with the hypothesis that it is inflexibility in the manner in which processes are employed that makes them pathologically problematic. However, further research is required to test and establish this

    Pion-Lambda-Sigma Coupling Extracted from Hyperonic Atoms

    Full text link
    The latest measurements of the atomic level width in Sigma-hyperonic Pb atom offer the most accurate datum in the region of low-energy Sigma-hyperon physics. Atomic widths are due to the conversion of Sigma-nucleon into Lambda-nucleon. In high angular momentum states this conversion is dominated by the one-pion exchange. A joint analysis of the data of the scattering of negative-Sigma on proton converting into a Lambda and a neutron and of the atomic widths allows to extract a pseudovector pion-hyperon-Sigma coupling constant of 0.048 with a statistical error of +-0.005 and a systematic one of +-0.004. This corresponds to a pseudoscalar coupling constant of 13.3 with a statistical uncertainty of 1.4 and a systematic one of 1.1.Comment: 12 pages, 1 figure, Use of Revtex.st

    Super-KMS functionals for graded-local conformal nets

    Full text link
    Motivated by a few preceding papers and a question of R. Longo, we introduce super-KMS functionals for graded translation-covariant nets over R with superderivations, roughly speaking as a certain supersymmetric modification of classical KMS states on translation-covariant nets over R, fundamental objects in chiral algebraic quantum field theory. Although we are able to make a few statements concerning their general structure, most properties will be studied in the setting of specific graded-local (super-) conformal models. In particular, we provide a constructive existence and partial uniqueness proof of super-KMS functionals for the supersymmetric free field, for certain subnets, and for the super-Virasoro net with central charge c>= 3/2. Moreover, as a separate result, we classify bounded super-KMS functionals for graded-local conformal nets over S^1 with respect to rotations.Comment: 30 pages, revised version (to appear in Ann. H. Poincare

    Dynamics of filaments and membranes in a viscous fluid

    Full text link
    Motivated by the motion of biopolymers and membranes in solution, this article presents a formulation of the equations of motion for curves and surfaces in a viscous fluid. We focus on geometrical aspects and simple variational methods for calculating internal stresses and forces, and we derive the full nonlinear equations of motion. In the case of membranes, we pay particular attention to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism is illustrated by two simple case studies: (1) the twirling instability of straight elastic rod rotating in a viscous fluid, and (2) the pearling and buckling instabilities of a tubular liposome or polymersome.Comment: 26 pages, 12 figures, to be published in Reviews of Modern Physic
    • 

    corecore