6,317 research outputs found

    The background for Skylab experiment T-002, manual navigation sightings

    Get PDF
    The background of the NASA-DOD manual navigation experiment (T002) on Skylab A is reviewed with emphasis on NASA's development of an error model for sextant measurements in midcourse navigation and on USAF's development of a low earth orbit manual navigation scheme. Instruments briefly described are a space sextant and space stadimeter, both of which are used by USAF in orbit navigation, the sextant by NASA in midcourse sightings. The rationale, data requirements, and data reduction procedures are discussed in terms of the goals of the agencies

    Necessary conditions for joining optimal singular and nonsingular subarcs

    Get PDF
    Necessary conditions for optimality of junctions between singular and nonsingular subarcs for singular optimal control problem

    A mechanistic visualization of the sun-earth- earth orbital plane system

    Get PDF
    Mechanistic model of sun-earth-earth orbital plane syste

    A data acquisition and handling system for the measurement of radial plasma transport rates

    Get PDF
    A system which allows the transfer of experimental data from one or more transient recorders to a digital computer, the entry of calibration data and the entry of archival data is described. The overall approach is discussed and illustrated in detail

    Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Get PDF
    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted

    Fluctuation spectra in the NASA Lewis bumpy-torus plasma

    Get PDF
    The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength

    Apparent Modulus of Elasticity of Dental Amalgams

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66932/2/10.1177_00220345750540043301.pd

    A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    Get PDF
    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented

    Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Get PDF
    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements

    Microbubble Cavitation Imaging

    Get PDF
    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 mu s. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented
    • …
    corecore