684 research outputs found

    Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections

    Get PDF
    This paper examines changes in the strength of the Walker circulation (WC) using the pressure difference between the western and eastern equatorial Pacific. Changes in observations and in 35 climate models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are determined. On the one hand, 78% of the models show a weakening of the WC over the twentieth century, consistent with the observations and previous studies using CMIP phase 3 (CMIP3) models. However, the observations also exhibit a strengthening in the last three decades (i.e., from 1980 to 2012) that is statistically significant at the 95% level. The models, on the other hand, show no consensus on the sign of change, and none of the models shows a statistically significant strengthening over the same period. While the reasons for the inconsistency between models and observations is not fully understood, it is shown that the ability of the models to generate trends as large as the observed from internal variability is reduced because most models have weaker than observed levels of both multidecadal variability and persistence of interannual variability in WC strength. In the twenty-first-century future projections, the WC weakens in 25 out of 35 models, under representative concentration pathway (RCP) 8.5, 9 out of 11 models under RCP6.0, 16 out of 18 models under RCP4.5, and 12 out of 15 models under RCP2.6. The projected decrease is also consistent with results obtained previously using models from CMIP3. However, as the reasons for the inconsistency between modeled and observed trends in the last three decades are not fully understood, confidence in the model projections is reduced

    The impact of anthropogenic forcing and natural processes on past, present, and future rainfall over Victoria, Australia

    Get PDF
    Ó 2020 American Meteorological Society.Cool-season (April to October) rainfall dominates the annual average rainfall over Victoria, Australia, and is important for agriculture and replenishing reservoirs. Rainfall during the cool season has been unusually low since the beginning of the Millennium Drought in 1997 (;12% below the twentieth-century average). In this study, 24 CMIP5 climate models are used to estimate 1) the extent to which this drying is driven by external forcing and 2) future rainfall, taking both external forcing and internal natural climate variability into account. All models have preindustrial, historical, and twenty-first-century (RCP2.6, RCP4.5, and RCP8.5) simulations. It is found that rainfall in the past two decades is below the preindustrial average in two-thirds or more of model simulations. However, the magnitude of the multimodel median externally forced drying is equivalent to only 20% of the observed drying (interquartile range of 40% to 24%), suggesting that the drying is dominated by internally generated rainfall variability. Underestimation of internal variability of rainfall by the models, however, increases the uncertainties in these estimates. According to models the anthropogenically forced drying becomes dominant from 2010 to 2029, when drying is evident in over 90% of the model simulations. For the 2018–37 period, it is found that there is only a;12% chance that internal rainfall variability could completely offset the anthropogenically forced drying. By the late twenty-first century, the anthropogenically forced drying under RCP8.5 is so large that internal variability appears too small to be able to offset it. Confidence in the projections is lowered because models have difficulty in simulating the magnitude of the observed decline in rainfall

    Modelled rainfall response to strong El Nino sea surface temperature anomalies in the tropical Pacific

    Get PDF
    © 2015 American Meteorological Society.El Niño-Southern Oscillation strongly influences the interannual variability of rainfall over the Pacific, shifting the position and orientation of the South Pacific convergence zone (SPCZ) and intertropical convergence zone (ITCZ). In 1982/83 and 1997/98, very strong El Niño events occurred, during which time the SPCZ and ITCZ merged into a single zonal convergence zone (szCZ) extending across the Pacific at approximately 58S. The sea surface temperature anomalies (SSTAs) reached very large values and peaked farther east compared to other El Niño events. Previous work shows that tropical Pacific precipitation responds nonlinearly to changing the amplitude of the El Niño SSTA even if the structure of the SSTA remains unchanged, but large canonical El Niño SSTAs cannot reproduce the szCZ precipitation pattern. This study conducts idealized, SST-forced experiments, starting with a large-amplitude canonical El Niño SSTA and gradually adding a residual pattern until the full (1982/83) and (1997/98) mean SST is reproduced. Differences between the canonical and strong El Niño SSTA patterns are crucial in generating an szCZ event. Three elements influence the precipitation pattern: (i) the local meridional SST maxima influences the ITCZ position and western Pacific precipitation, (ii) the total zonal SST maximum influences the SPCZ position, and (iii) the equatorial Pacific SST influences the total amount of precipitation. In these experiments, the meridional SST gradient increases as the SSTAs approach szCZ conditions. Additionally, the precipitation changes evident in szCZ years are primarily driven by changes in the atmospheric circulation, rather than thermodynamic changes. The addition of a global warming SST pattern increases the precipitation along the equator and shifts the ITCZ farther equatorward

    The non-linear impact of El Nino, La Nina and the Southern Oscillation on seasonal and regional Australian precipitation

    Get PDF
    The relationship between El Niño-Southern Oscillation (ENSO) indices and precipitation (P) in some parts of Australia has previously been shown to be non-linear on annual and seasonal time scales. Here we examine the relationship between P and the Southern Oscillation Index (SOI) at all Australian locations and in all seasons. We show that in many Australian regions, there is more-than-expected P during strong La Niña years (SOI>13), but less-than-expected drying during strong El Niño years (SOI<-13). Statistically significant non-linearities are found over northern NT, QLD and parts of WA during SON, and parts of QLD, NSW, and VIC during DJF, when regressing P against June-December SOI. During the MAM immediately preceding a June-December ENSO year, and during JJA, the rainfall-SOI relationship is linear over most of the country. Systematic eastward shifts in P patterns can explain non-linearities over northern Australia, but do not explain non-linearities southward of approximately 20°S. The seasonal P distribution is decomposed into FP, the fraction of days on which P falls, and PD, the amount of rain per day on days when P is non-zero. Both FP and PD display a non-linear relationship with SOI similar to the P-SOI relationship, although the relative influence of each term on P is spatially and seasonally dependent

    The varied impacts of El Nino-Southern Oscillation on Pacific Island climates

    Get PDF
    El Nino-Southern Oscillation (ENSO) drives interannual climate variability in many tropical Pacific island countries, but different El Nino events might be expected to produce varying rainfall impacts. To investigate these possible variations, El Nino events were divided into three categories based on where the largest September-February sea surface temperature (SST) anomalies occur: warm pool El Nino (WPE), cold tongue El Nino (CTE), and mixed El Nino (ME), between the other two. Large-scale SST and wind patterns for each type of El Niño show distinct and significant differences, as well as shifts in rainfall patterns in the main convergence zones. As a result, November to April rainfall in many Pacific island countries is significantly different among the El Nino types. In western equatorial Pacific islands, CTE events are associated with drier than normal conditions whereas ME and WPE events are associated with significantly wetter than normal conditions. This is due to the South Pacific convergence zone and intertropical convergence zone moving equatorward and merging in CTE events. Rainfall in the convergence zones is enhanced during ME and WPE and the displacement is smaller. La Nina events also show robust impacts that most closely mirror those of ME events. In the northwest and southwest Pacific strong CTE events have much larger impacts on rainfall than ME and WPE, as SST anomalies and correspondingly large-scale surface wind and rainfall changes are largest in CTE. While variations in rainfall exist between different types of El Nino and the significant impacts on Pacific countries of each event are different, the two extreme CTE events have produced the most atypical impacts

    The role of the South Pacific in modulating Tropical Pacific variability

    Get PDF
    Tropical Pacific variability (TPV) heavily influences global climate, but much is still unknown about its drivers. We examine the impact of South Pacific variability on the modes of TPV: the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). We conduct idealised coupled experiments in which we suppress temperature and salinity variability at all oceanic levels in the South Pacific. This reduces decadal variability in the equatorial Pacific by ~30% and distorts the spatial pattern of the IPO. There is little change to overall interannual variability, however there is a decrease in the magnitude of the largest 5% of both El Niño and La Niña sea-surface temperature (SST) anomalies. Possible reasons for this include: (i) reduced decadal variability means that interannual SST variability is superposed onto a ‘flatter’ background signal, (ii) suppressing South Pacific variability leads to the alteration of coupled processes linking the South and equatorial Pacific. A small but significant mean state change arising from the imposed suppression may also contribute to the weakened extreme ENSO SST anomalies. The magnitude of both extreme El Niño and La Niña SST anomalies are reduced, and the associated spatial patterns of change of upper ocean heat content and wind stress anomalies are markedly different for both types of events

    SAMI-HI: the connection between global asymmetry in the ionised and neutral atomic hydrogen gas in galaxies

    Full text link
    Observations of the neutral atomic hydrogen (HI) gas in galaxies are predominantly spatially unresolved, in the form of a global HI spectral line. There has been substantial work on quantifying asymmetry in global HI spectra (`global HI asymmetry'), but due to being spatially unresolved, it remains unknown what physical regions of galaxies the asymmetry traces, and whether the other gas phases are affected. Using optical integral field spectrograph (IFS) observations from the Sydney AAO Multi-object IFS (SAMI) survey for which global HI spectra are also available (SAMI-HI), we study the connection between asymmetry in galaxies' ionised and neutral gas reservoirs to test if and how they can help us better understand the origin of global HI asymmetry. We reconstruct the global Hα\alpha spectral line from the IFS observations and find that, while some global Hα\alpha asymmetries can arise from disturbed ionised gas kinematics, the majority of asymmetric cases are driven by the distribution of Hα\alpha-emitting gas. When compared to the HI, we find no evidence for a relationship between the global Hα\alpha and HI asymmetry. Further, a visual inspection reveals that cases where galaxies have qualitatively similar Hα\alpha and HI spectral profiles can be spurious, with the similarity originating from an irregular 2D Hα\alpha flux distribution. Our results highlight that comparisons between global Hα\alpha and HI asymmetry are not straightforward, and that many global HI asymmetries trace disturbances that do not significantly impact the central regions of galaxies.Comment: 11 pages, 6 figures, 1 appendix, accepted for publication in MNRA

    Challenges in the Quest for Keystones

    Get PDF
    Identifying keystone species is difficult-but essential to understanding bow loss of species will affect ecosystems

    Humans have already increased the risk of major disruptions to Pacific rainfall

    Get PDF
    © The Author(s) 2017.Intermittent disruptions to rainfall patterns and intensity over the Pacific Ocean lasting up to ∼ 1 year have major impacts on severe weather, agricultural production, ecosystems, and disease within the Pacific, and in many countries beyond. The frequency with which major disruptions to Pacific rainfall occur has been projected to increase over the 21st century, in response to global warming caused by large 21st century greenhouse gas emissions. Here we use the latest generation of climate models to show that humans may have contributed to the major disruption that occurred in the real world during the late 20th century. We demonstrate that although marked and sustained reductions in 21st century anthropogenic greenhouse gas emissions can greatly moderate the likelihood of major disruption, elevated risk of occurrence appears locked in now, and for at least the remainder of the 21st century

    Subordinate Actors’ Institutional Maintenance in Response to Coercive Reforms

    Get PDF
    Institutional work research shows how actors purposively create, maintain, and disrupt institutions. Failed or unintended consequences of institutional maintenance remain relatively unexplored, for two reasons. First, the role of coercive disruption actors (e.g., a state) has not been fully explored. Second, existing literature takes scant account of power and disregards the resistance tactics of subordinate actors. Drawing on a longitudinal case study of a migrant workers’ union in China, we show how subordinate actors were first able to maintain institutional arrangements followed by a maintenance failure under the disruption work performed by the authoritarian state. This study extends the institutional maintenance literature in two ways. First, subordinate actors can sustain institutions insofar as they collectively deploy superficial deference and hidden forms of resistance. Second, maintenance work is vulnerable in the sense that it is contingent on the systems of domination and the level of pressure exerted by the disruption actors
    • …
    corecore