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Inability of CMIP5 Models to Simulate Recent Strengthening of the
Walker Circulation: Implications for Projections
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ABSTRACT

This paper examines changes in the strength of the Walker circulation (WC) using the pressure difference
between the western and eastern equatorial Pacific. Changes in observations and in 35 climate models from
the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are determined. On the one hand,
78% of the models show a weakening of the WC over the twentieth century, consistent with the observations
and previous studies using CMIP phase 3 (CMIP3) models. However, the observations also exhibit
a strengthening in the last three decades (i.e., from 1980 to 2012) that is statistically significant at the 95%
level. The models, on the other hand, show no consensus on the sign of change, and none of the models shows
a statistically significant strengthening over the same period. While the reasons for the inconsistency between
models and observations is not fully understood, it is shown that the ability of themodels to generate trends as
large as the observed from internal variability is reduced because most models have weaker than observed
levels of both multidecadal variability and persistence of interannual variability in WC strength.
In the twenty-first-century future projections, the WC weakens in 25 out of 35 models, under represen-

tative concentration pathway (RCP) 8.5, 9 out of 11 models under RCP6.0, 16 out of 18 models under
RCP4.5, and 12 out of 15 models under RCP2.6. The projected decrease is also consistent with results
obtained previously using models from CMIP3. However, as the reasons for the inconsistency between
modeled and observed trends in the last three decades are not fully understood, confidence in the model
projections is reduced.

1. Introduction

The Walker circulation (WC) is one of the world’s
most prominent and important atmospheric systems (e.g.,
Gill 1982). It extends across the entire tropical Pacific
Ocean, encompassing 1) the trade winds blowing from
east to west; 2) air forced to rise over the western Pacific,
SoutheastAsia, and northernAustralia through enhanced
convection; 3) winds blowing counter to the trades aloft;
and 4) air descending over the eastern Pacific Ocean
(Power and Kociuba 2011b).
The WC exhibited a weakening trend between pe-

riods beginning 1900–50, ending at 2005 (Tanaka et al.
2004; Vecchi et al. 2006; Meehl et al. 2007; Power and
Smith 2007; Collins et al. 2010; Vecchi and Wittenberg
2010; Nicholls 2008; Power andKociuba 2011b; Tokinaga
et al. 2012a,b). Vecchi et al. (2006) found that without
anthropogenic forcing, the trends in themodels from the

Coupled Model Intercomparison Project (CMIP) phase
3 (CMIP3) were much lower than the observations.
They also examined preindustrial runs, and found the
magnitude of natural, internally generated trends to be
much smaller than the observational trend, concluding
that internal variability alone cannot account for the
observed trend.
Power andKociuba (2011b) examined theWC strength

in CMIP3 models and found that 15 out of 23 models
showed a weakening of the WC during the twentieth
century (1900–99). External forcing was estimated to ac-
count for 50% 6 20% of the observed weakening. A
stronger weakening was found during the twenty-first
century in 13 out of 21 models for Special Report on
Emissions Scenarios (SRES) A1B, and 14 out of 17
models for SRES A2.
Vecchi et al. (2006) argued that the weakening of the

WC arises as follows: Warming from increases in green-
house gases increases global water vapor amount by
approximately 7% 8C21, in agreement with the Clausius–
Clapeyron relationship (Soden et al. 2005). However, the
precipitation response increases more slowly and ranges
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from 2% to 3% 8C21 (Vecchi and Soden 2007; Held and
Soden 2006). To balance the latent heat of precipitation
and the radiative cooling in the global tropics, the circu-
lation must slow down in these models. Strictly speaking,
this is for the global mean circulation and does not nec-
essarily apply specifically to the WC. Also, the model
convective mass flux does not necessarily align with the
WC (Sandeep et al. 2014). Another pioneering study is
that of Knutson andManabe (1995): the dry static stability
increases more than the radiative cooling so that the cir-
culation has to slow down in response to greenhouse gases.
Possible mechanisms for why the precipitation re-

sponds more slowly than the water vapor based on the
Clausius–Clapeyron relationship were studied in some
Fourth Assessment Report (AR4) models (Stephens
and Ellis 2008). Globally, it was found that the atmo-
sphere cannot emit radiation at a large enough rate to
support precipitation due to the increase in water vapor.
The efficiency of precipitation from water vapor is neg-
atively affected by cloud radiative heating due to a re-
duction in the amount of cloud in themiddle troposphere,
and also a global reduction in sensible heating.
While weakening is evident over the longer time

scales described above, some observational studies show
that the WC has strengthened over recent decades
(Sohn et al. 2013; Sohn and Park 2010; Meng et al. 2012;
L’Heureux et al. 2013; Solomon and Newman 2012; Luo
et al. 2012). For example, Sohn et al. (2013) found sta-
tistically significant trends in mean sea level pressure
(MSLP), sea surface temperature (SST), and wind and
water vapor transport linked to the WC. Sohn et al.
(2013) concluded that decadal variations in El Niño in
recent decades strengthened the WC. They also exam-
ined changes in the WC in 21 CMIP3 models for the
historical period (1979–99), and they found no agree-
ment on the sign of the change.
Sohn et al. (2013) concluded that the failure to capture

the recent strengthening in CMIP3 models is mostly due
to problems in simulating the distinct eastern, and cen-
tral Pacific El Niños (Ashok and Yamagata 2009; Ham
and Kug 2012; Power et al. 2013). One driving force of
WC strength is the equatorial Pacific sea surface tem-
perature gradient, which also increased in recent de-
cades. This was tested in an atmospheric general
circulation model (AGCM) forced by the historical sea
surface temperature (Meng et al. 2012).Meng et al. (2012)
found that an increased SST gradient led to an enhance-
ment of both the Walker and Hadley circulations.
SST-forced AGCM experiments were also conducted

by Tokinaga et al. (2012a,b). However, their experiments
were conducted over the longer period 1950–2009, and
a weakening of the WC resulted. L’Heureux et al. (2013)
examined multidecadal trends of MSLP starting from

1900 in 10 different datasets, and they identified a
strengthening of the WC in all 10 in the more recent pe-
riod. Solomon and Newman (2012) used a statistical
method to reduce the impact of ENSOon various SST and
SLP reconstructions, and they then found no weakening
of theWCover the period 1900–2010 in the residual data.
The WC index was also examined in 37 models from

phase 5 of CMIP (CMIP5; 101 runs) where trends were
calculated over the period 1870–2004 (DiNezio et al. 2013).
Theobservations exhibited aweakening over this period.A
weakening was found in 25% of the runs that lie within the
95% confidence interval of the observed value. A positive
trend (1.7Payr21) was also identified in the observations
during 1980–2004, and it was suggest that the positive trend
is likely due to multidecadal internal variability.
The recent warming hiatus (2001–12) is also related

to the strengthening of the WC (England et al. 2014).
England et al. (2014) suggest that there has been an ac-
celeration of the jets and an increase in the wind-driven
Ekman divergence away from the equator. Half of the
wind stress trend during 1992–2011 is associated with the
interdecadal Pacific oscillation (IPO; Power et al. 1998;
Folland et al. 2002;Meehl andArblaster 2012;Meehl et al.
2013). The SST trend pattern is IPO-like and consistent
with the strengthening of the trade winds (England et al.
2014). There has also been a shift in the western tropical
Pacific sea level trend during the 1990s (Merrifield 2011).
In this study, we update and extend this earlier work

by examining trends in the strength of theWC in version 2
of theHadleyCentre sea level pressure dataset (HadSLP2)
up to 2012, and in the recently releasedCMIP5models.We
examine the ability of the models to reproduce the ob-
served changes over 1980–2012 and the extent towhich the
strengthening might have been driven by external forcing
and internally generated natural variability. We also ex-
amine the projected changes in strength of the WC in the
twenty-first century, and compare these projected changes
with those obtained previously using CMIP3 models
(Power and Kociuba 2011b). Implications of the ability of
models to simulate observed trends are considered.
The metric used to calculate the WC is described in

section 2. The climate models and analysis methods are
described in section 3. We examine trends in the ob-
servations and model simulations for the period 1900–
2012 in section 4. Trends for the recent 33-yr period
1980–2012 are examined in section 5. This includes dis-
cussion on the magnitude of model variability in 33-yr
trends from historical and preindustrial runs. Factors
influencing the ability of models to simulate internally
driven trends in the historical and preindustrial runs are
examined in section 6. The future projected trends for
the period 2013–2100 for the representative concentra-
tion pathway (RCP) 8.5 scenario are discussed and
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compared with the CMIP3 model results in section 7.
Results are summarized and discussed in section 8.

2. Index for the Walker circulation

We follow previous studies (Vecchi et al. 2006; Power
andKociuba 2011b) and use an index for theWCbased on
the difference between equatorial mean sea level pressure
in a western box (58S–58N, 808–1608E) and an eastern box
(58S–58N, 1608–808W). We will refer to these areal aver-
ages of MSLP as BoxW and BoxE respectively. The
arithmetic difference BoxDP 5 BoxE 2 BoxW is used as
a proxy for the strength of the WC. The data for these in-
dices are derived from theHadSLP2r (single) dataset from
theMetOffice (Allan andAnsell 2006). This was extended
up to 2012 where the variance of the period 2006–12 was
reduced by the Met Office, in order to be consistent with
HadSLP2 (http://www.metoffice.gov.uk/hadobs/hadslp2/
data/HadSLP2r_lowvar_description.doc). A summary
of annual trends will be presented.

3. Climate models and analysis

We analyze the twentieth- and twenty-first-century in-
tegrations from numerous coupled general circulation
models available from the World Climate Research Pro-
gramme (WCRP)–Climate Variability and Predictability
(CLIVAR)–Working Group on Coupled Modelling
(WGCM) Coupled Model Intercomparison Project. In
the preindustrial experiment, the greenhouse gases
(GHGs), aerosols, ozone, and solar irradiance are fixed
at the year 1850. The historical simulations have time-
dependent external forcing, which includes GHGs, vol-
canic activity, the solar constant, ozone, and aerosols.
The forcing data over the period 1850–2005 are taken from
observations. Further details about the experiments are
described by Taylor et al. (2012).
We begin by investigating the twentieth-century re-

sults and compare them with the observations. We then
examine twenty-first-century changes in runs forced using
the representative concentration pathways. Here we fo-
cus on RCP8.5 (which has as a radiative forcing of ap-
proximately 8.5Wm22 by 2100). Thirty-five models are
analyzed (the first run per model, i.e., r1i1p1). All the
historical runs begin at 1900 and end at 2005. We ex-
tended this to 2012 by using RCP8.5 over the period
2006–12 so that direct comparisons can be made with the
observational period. We found that our results were not
sensitive to the choice of the 7-yr patching, aswe obtained
the same conclusionswhen extended byRCP2.6, RCP4.5,
RCP6.0, or RCP8.5. In this paper, we define the historical
period to be 1900–2012. All the RCP scenarios cover
2006–2100. The twenty-first-century calculations here are

based on the period 2013–2100 so that there is no overlap
between the historical period and the twenty-first-century
period analyzed.We define the twenty-first-century period
to be 2013–2100. All our analysis of historical and pre-
industrialmodels is performedusing annual data (January–
December). In section 5b(3) we use 32 climate models for
the preindustrial runs that have lengths ranging from 200 to
1156 years available to us (Table 2). In section 7, we ex-
amine twenty-first-century trends (2006–2100) in 20RCP8.5
models and compare the results to previous CMIP3 results.
The statistical significance of trends presented below

takes persistence into account (Power et al. 1998). The
method used for calculating statistical significance, un-
less otherwise stated, is described in appendix A. We
will refer to this as the P98 method.
The numerical values of significance provided below

are defined as 100 (12 2a) where a is the probability of
obtaining a trend by chance. At the 95% level a is 0.025
for a two-sided t test. Two trends are defined as statis-
tically different at the 95% level if the slope of the trend
difference is statistically different from zero at the 95%
level (i.e., a # 0.025).

4. Trends in observations and models for
1900–2012

We examine trends in observations and models over
the full period 1900–2012 using two different sets of in-
dices. In section 4a we examine trends in the box indices
BoxW, BoxE, and the difference BoxDP. In section 4b
we examine trends in the station data at Darwin, Tahiti
(which lie just south of BoxW and BoxE respectively),
and the difference Tahiti minus Darwin. This provides
two different ways of comparing the consistency be-
tween the model trends with the observed. It is known
that station data from Darwin are more stable in time
than a box index (Bunge and Clarke 2009) and the in-
clusion of Darwin MSLP in our analysis allows us to
examine the possible role of observational error.

a. Trends in BoxDP, BoxW, and BoxE

Observed (HadSLP2) and modeled trends in BoxDP
for the entire historical period 1900–2012 are shown in
Fig. 1. Bars depicting observed trends are either a green
(if positive) or pink (if negative). Note that a negative
(positive) value in BoxDP means that the WC is weak-
ening (strengthening). Positive (negative) values in BoxW
or BoxE mean that there is a trend toward higher (lower)
pressure, and therefore sinking (ascending) motion. Re-
sults from this section are also summarized in Table 1.
The observed trends for BoxW (10.06Payr21) and

BoxDP (20.2Payr21) are not statistically significant,
while the trend inBoxE (20.13Payr21) is only significant
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at the 84% level for the period 1900–2012. This assess-
ment is based on the method described by Power et al.
(1998) inwhich persistence is taken into account, referred
to here as the P98 method (see appendix A for details).
The bars depicting trends in each of the 35 models are

red if positive or blue if negative. The multimodel mean
(MMM) is the rightmost bar on the plot (labeled MM),
and a yellow horizontal line is extended across all
models at this value. The MMM is a model-based esti-
mate of the externally forced component, consisting of
natural and anthropogenically forced components.
Inmostmodels, the 1900–2012 trend inBoxW is larger

than the observed positive trend, and the trend in nine of
these models is significant at the 95% level (i.e., there is
less than 5% chance of obtaining the trend by chance
taking persistence into account). The MMM trend in
BoxW (0.18 Pa yr21) is significant at the 99.99% level.
As noted above, the observed negative trend in BoxE

is only statistically significant at the 84% level. Only two
of the model trends in Box E are significant at the 95%

level, but since there are 25 positive and 10 negative
trends, it turns out that the MMM trend is small
(0.05 Pa yr21) but significant at the 95% level.
Most models show a negative trend in BoxDP, and

three of these models show a negative trend at the 95%
level. Despite the large internal variability, 27 out of 35
models have negative trends for BoxDP consistent with a
weakening of the WC over the period 1900–2012. Using
a binomial distribution assuming that the chance of any
individual trend being positive or negative is equally
likely and are both 0.5 (see Power andKociuba 2011a,b),
then this result (i.e., 27 out of 35 models with trends of
same sign) is significant at the 99.97% level, under the
assumption that themodels are independent (Power and
Kociuba 2011b). The MMM trend for BoxDP is signifi-
cant at the 99.7% level according to the P98 method.
The MMM trend in BoxDP is similar to the observed

value. While, most of the models have a trend in BoxE
with opposite sign to the observations, the differences
between BoxE trends in the models and the observations

FIG. 1. Observed and modeled twentieth-century linear trends (Pa yr21) for each model
listed in annual (top) BoxW (58S–58N, 808–1608E), (middle) BoxE (58S–58N, 1608–808W), and
(bottom) BoxDP (5BoxE 2 BoxW). The bars to the left of the plot are the observed
(HadSLP2) trends. They are in green if the trend is positive and pink if the trend is negative.
The dashed lines are the negative of the observed trends. The remaining bars represent a single
run for each model. These bars are red if they are positive and blue if they are negative. The
horizontal yellow line gives the multimodel mean (MM). The 95% confidence interval for MM
is shown as gray horizontal lines. Trends are calculated for the period 1900–2012. All historical
model runs were extended from2006 to 2012 usingRCP8.5 data. The confidence intervals are at
the 95% level. The numbers on the plot are the probabilities of the trends not occurring by
chance taking persistence into account.
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are not statistically significant at the 95% level. In
summary, there is no firm evidence of inconsistency
between models, taken as a whole, and the observations
over the full period 1900–2012.

b. Trends in station data (1900–2012)

The previous method is now applied to Darwin,
Tahiti, and Tahiti minus Darwin, and the results are also
summarized in Table 1.
We begin by comparing observed trends in the Box

indices with observed trends in Darwin and Tahiti
MSLP. Darwin MSLP is known to have data coverage
that is more stable in time than BoxW (Bunge and
Clarke 2009), and hence might be considered more re-
liable than BoxW over the 1900–2012 period. The ob-
served trend for Darwin (0.28 Pa yr21) is larger than
BoxW (0.06 Pa yr21). However, neither trend is statis-
tically significant, nor is the trend difference. The con-
sistency between the trend at Darwin and BoxW adds
confidence to the reliability of the BoxW trend.
The observed trends at Tahiti and BoxE are opposite

in sign, but neither trend is statistically significant at the
95% level. The observed trend in Tahiti minus Darwin
(20.14 Pa yr21) is slightly smaller than the observed
trend in BoxDP (219Pa yr21). Again results seem
broadly consistent.
We now compare the consistency between the model

trends and observations for Darwin and Tahiti. The
MMM trend is about half of the observed positive trend
for Darwin. Most of the models (26 out of 35) have the
same sign as the trend inDarwinMSLP. TheMMMtrend
in Tahiti MSLP is approximately equal to its observa-
tional counterpart, although the observed trend is not
significant. There are 27 models that have the same sign
as the observed trend. In themodels there is no consensus
of the sign of the trend (18 positive and 17 negative).
The analysis of the station data indicates that the

observed trend at BoxW is smaller than the observed
trend at Darwin, and both are positive. This adds some
confidence to the reliability of the BoxW data. Most of
the model trends agree with the sign of the trend for
Darwin and Tahiti.

5. 33-yr trends

In this section, we first examine the trend in the box
indices BoxDP, BoxW, and BoxE for the recent 33-yr
period 1980–2012 in the observations. These trends are
compared to the trends over the same period in the
historical climate models. This analysis is repeated for
Tahiti minus Darwin, Darwin, and Tahiti, so that the
consistency between model trends and the station data
observations can be tested, and the results that follow
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are compared to the corresponding box indices.We then
examine how unusual the observed recent 1980–2012
trend is by calculating all possible 33-yr trends over the
1900–2012 period. This approach is also applied to
the historical models to determine whether trends larger
than observed could be achieved at other 33-yr periods.
Last, we examine how frequently the observed 1980–
2012 trend could occur from internal variability alone,
by examining trends in the preindustrial integrations.

a. Observed and model trends over the period
1980–2012

1) TRENDS IN BOX INDICES IN OBSERVATIONS

AND MODELS (1980–2012)

Trends over the recent period 1980–2012 are shown as
the first bar in Fig. 2. The trend in BoxDP for the
HadSLP2 dataset is 3.0Payr21, which is statistically signif-
icant at the 95% level. The trends in BoxW (21.7Payr21)
and BoxE (1.3Payr21) are statistically significant at the
94% and 97% level respectively.
The model trends displayed in Fig. 2 for BoxDP are all

smaller in magnitude than the corresponding observa-
tions, and only one model has a trend that is statistically
significant above the 90% level. Nor is there any con-
sensus on the sign of the trends among the models, as
there are an approximately equal number of positive and

negative trends. TheMMMtrend inBoxDP (0.16Payr21,
yellow line in Fig. 2) is not statistically significant. It is
small compared to the observed trend (3.0Pa yr21),
which indicates that any externally forced component is
very small compared with the observed trend in BoxDP
over the 1980–2012 period. Themodels haveuncertainties
in the trend as indicated by the (brown) confidence in-
tervals in Fig. 2. So if this is taken into account when
comparing the model trends in BoxDP with the observed
trend, we find that only 11 models have 95% confidence
intervals that encompass the observed trend for BoxDP.
Another approach to assessing consistency between

model and observed trends is to calculate the statistical
significance of the difference between the model trends
and the observed trend. We find that six models have
trends in BoxDP that are different from the observed at
the 95% level. Also, 14 models have trends statistically
different from the observed trend at the 90% level. In
addition, the difference between the MMM trend in
BoxDP and the observed trend is statistically significant at
the 95% level. This suggests that there is an inconsistency
between the model and observed trends in BoxDP.
Among themodel trends for BoxW (MMM0.5Payr21)

there are 25 large positive values and 10 small negative
values. The statistical significance of this asymmetry in the
sign of trends is 99.7% (assuming a binomial distribution

FIG. 2. As in Fig. 1, but for the years 1980–2012. The observational dataset HadSLP2 (1900–
2012) was used. The confidence intervals are at the 95% level and the error bars are centered
(brown) on each model name. The purple error bars to the left of the centered bars indicate the
largest positive and negative 33-yr trends that can occur anywhere over 1900–2012.

1 JANUARY 2015 KOC IUBA AND POWER 25



as described previously). Using the P98 method the sig-
nificance becomes 95%.
The statistical significance of the difference between

the BoxW trends in the individual model and the ob-
servations is now considered. We find that 10 models
have trends statistically different to the observed, at the
95%, while an additional five models have trends that
are statistically significant at the 90% level only. The
MMM trend in BoxW is statistically different from the
observed trend at the 95% level. Furthermore, the sign
of the trend in BoxW is opposite to the sign of the ob-
served trend. This is in contrast to the MMM trend of
BoxE (0.34 Pa yr21), which has the same sign as the
observed trend (1Pa yr21). There is more agreement
between the model trends in BoxE and the observed,
since only one model has a trend that is statistically
significantly different to the observed trend at the 95%
level. Note that the observed trend in BoxE lies within
the confidence intervals of 28 of the 35 models. Twenty-
five out of 35 models have a positive trend, which is
significant at the 99.7% level using a binomial distribu-
tion as before. This result remains statistically significant
(at the 95% level) if the significance is calculated using
the P98method. The trend results for the box indices are
summarized in Table 1.
In summary, models cannot capture the 1980–2012

strengthening of the Walker circulation using the
equatorial box difference index BoxDP, even if confi-
dence intervals are considered. The primary reason for
this arises in the simulation of the trend in BoxW, rather
than the trend in BoxE.

2) TRENDS IN MSLP AT DARWIN AND TAHITI IN

OBSERVATIONS AND MODELS (1980–2012)

We repeat this analysis usingDarwin and Tahiti to test
the ability of themodels to simulate the station data, and
to make broad comparisons between the station data
and the box index results.
The trend for Darwin is also negative (21.3 Pa yr21),

but the MMM trend is a smaller positive value
(0.4 Pa yr21), and most of the model trends (23 models)
are positive. However, only two models have trends that
are statistically different to the observed at the 90%
level. The trend for Tahiti (3.6 Pa yr21) is statistically
significant at the 96% level. Most of the model trends
are positive at Tahiti, and the MMM trend is less than
one-third (1 Pa yr21) of the observed. This indicates that
there is a significant external forcing component to the
trend at Tahiti, and that the global warming signal has
emerged in this 33-yr period. This is consistent with
a previous study that showed that the MSLP increases
more at Tahiti than at Darwin (Power and Kociuba
2011a). We also find the Tahiti minus Darwin trend is

also positive (4.9 Pa yr21); however, this signal is domi-
nated by the warming trend at Tahiti.
These results show that themodel trends are consistent

with the observed trends, and seem to capture the global
warming trend at Tahiti over the 1980–2012 period.

b. All 33-yr trends

1) OBSERVATIONS

The magnitude of the 1980–2012 observed trend in
BoxDP is compared to other 33 periods to determine
how unusual this event is. All possible 33-yr periods are
displayed in Fig. 3 as a red curve. The 1980–2012 trend
is the largest of all possible 33-yr trends, and has the
highest significance level of 95%. Significance at the
90% level is indicated as a thicker red curve on top of
the running trend (thin red) curve. Only two other pe-
riods post-1900 had trend significance at the 90% level,
1991 (i.e., 1959–91) and 1955 (i.e., 1923–55), and both of
these trends had magnitudes less than 2Pa yr21.

2) HISTORICAL MODELS

One possible explanation for why the climate models
cannot reproduce the observed trend over the last
33 years is that short-term trends are very sensitive to El
Niño and LaNiña events. In the early part of 1980s in the
observations, there were a number of successive El Niño
events (1982/83 and 1986/87). Near the end of the 33-yr
period there was a strong La Niña (2010–12) and a

FIG. 3. Time series of BoxDP for HadSLP2. Various trend lines
are added to the time series (blue); 1850–2012 (gray), 1900–2012
(black), 1951–2012 (thin green), and 1980–2012 (thick green). Any
trend calculated before 1951 and ending in 2012 is negative (WC
weaken), and positive (WC strengthen) for calculations after 1951
and ending in 2012. A 33-yr running block trend is shown for each
year end (i.e., last year in 33-yr block) in red, indicating the largest
trend occurred over 1980–2012 and is significant at the 95% level.
The thick red portions of the curves indicates the significance of the
trend above the 90% level.
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weak–moderate La Niña (2008/09). These events have a
large impact on the strength of the trend. The phasing of
ENSO and IPO events in the models will, in general, be
unrelated to the phasing of these events in the real world.
It is therefore useful to determine the largest 33-yr trend
magnitude anywhere in a time series to see if trends
rivalling the observed 1980–2012 trend are captured at
any other time during the historical period.
The largest magnitude (positive and negative) 33-yr

trends from anywhere within 1900–2012 are presented in
Fig. 2 as a purple bar left of the main (brown) bar. In this
time period there are 81 possible 33-yr trends. There
only two models that have a 33-yr trend that is larger in
magnitude than observed, and two models are within
97% of the magnitude of the observed trend. These re-
sults are shown in Table 2 (note that expansions of
model names in Table 2 are provide in appendix F).
Only two out of 35 historical models can simulate

the magnitude of the 1980–2012 trend in BoxDP even if
33-yr trends are searched everywhere in the historical
period. Overall, the magnitude of the 1980–2012 ob-
served trend is exceeded only once every 400 years on
average, in the historical models.

3) PREINDUSTRIAL MODEL SIMULATIONS

We now examine the effect of internal variability only
on 33-yr trends, and determine how frequently these
trends have magnitudes that exceed the magnitude of
the observed 1980–2012 trend in BoxDP.

We use 32 preindustrial run models in which trends
are entirely driven by internal natural variability. These
runs ranged in length from 200 to 1156 years (Table 2),
with an average length of approximately 500 yr for each
model. Trends are calculated for every possible 33-yr
window which can overlap. We find that only eight
models out of 32 have a trend with a magnitude ex-
ceeding that of the observed. We define an event as
a trend calculated from a particular 33-yr window that
has a magnitude greater than the 1980–2012 observed
trend. Only one model (GFDL-ESM2M) exhibited
multiple events. Overall there are at most 11 events with
positive trends and 15 events with negative trends. So
conservatively there are at most 26 cases found in
17 357 yr of data tested; or 1.5 events per 1000 yr.
These results show that the models under pre-

industrial conditions only rarely reproduce trends that
have magnitudes matching or exceeding the magnitude
of the observed trend over 1980–2012.

6. Factors influencing internally driven trends

There are a variety of factors that can potentially in-
fluence the magnitude of internally driven variability
and trends. A range of metrics can be used to assess
various properties of ENSO variability (Bellenger et al.
2014; Stoner et al. 2009; Newman et al. 2003; Smith and
Sardeshmukh 2000; Trenberth and Hoar 1996, 1997).
Here we consider the level of interannual variability and

TABLE 2. BoxDP trends in preindustrial models exceeding observed trends (1980–2012). Trends were calculated using all possible
blocks of 33 yr for 32 preindustrial climate models. Only the models presented here had 33-yr trends of absolute value greater than the
1980–2012 observed trend (3.04 Pa yr21), where the number of positive and negative trends that exceed the observed are displayed for
each model. The lag-1 autocorrelation (ac), standard deviation (s), and standard deviation of the 13-yr running average [s(13 yra)] are
also displayed. The same analysis is performed on 35 historical runs. Only two models exceeded the magnitude of the observed trend, and
two were within 97% of the magnitude of the observed trend. The latter two trends are included as italic text in parentheses. The same
statistics for the observations are also presented.

Models
No. of

trends .3
No. of

trends ,23 Length (yr) Lag-1 ac s(Pa) s(13 yra) (Pa)

Preindustrial (32 models tested)
ACCESS1–3 (r1i1p1) 1 0 500 0.124 67.815 14.306
CESM1-BGC (r1i1p1) 0 1 500 0.120 89.324 13.364
CESM1-WACCM (r1i1p1) 1 1 200 0.060 109.881 16.551
GFDL-ESM2M (r1i1p1) 1 4 500 0.221 117.025 17.704
MIROC5 (r1i1p1) 1 2 670 0.300 82.370 15.205
MPI-ESM-LR (r1i1p1) 4 1 1000 0.282 67.749 14.676
MPI-ESM-MR (r1i1p1) 1 5 1000 0.280 68.475 16.084
MPI-ESM-P (r1i1p1) 2 1 1156 0.204 66.925 15.560
All models used 11 15 17 357

Historical (1900–2012)
(35 models tested)
CanESM2 0 (22.97) 1 113 0.09 82.5 14.56
CMCC-CESM 0 1 113 20.001 116.70 17.83
GFDL-ESM2M (r1i1p1) (2.98) 1 0 113 0.120 145.16 19.46
MIROC5 (r1i1p1) 2 2 113 0.325 106.42 17.55

Observations HadSLP2 1 0 113 0.321 46.4 15.314
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the degree of persistence that exists in the interannual
variability. The larger the interannual variability and the
larger the persistence, then the larger the trends can be.
Here wewill examine the level of interannual variability.
We will focus here on the standard deviation (s) of both
interannual and decadal variability [s(13 yra), based on
13-yr running averages], the ratio s/s(13 yra), and the
persistence a(1). We will compare the value of the model
statistics with observational estimates to see how re-
alistically the models simulate them. We will see that the
models lack persistence and this restricts their ability to
simulate large trends.

a. Historical simulations and observations

Here we examine the ability of models to simulate the
standard deviation, and lag-1-yr autocorrelation co-
efficient [a(1)] from 34 models (blue crosses) to the
observations (red star labeled 1) for BoxDP, in Fig. 4a.
It is clear that many of the models have a higher

variance than the observed. Only five models have
a lower variability. The sobs is 1 standard deviation of

the multimodel mean of s. Most of the models do not
have enough persistence [where only six models have an
a(1) exceeding the observational value]. Two models
have a larger persistence than the observations, but their
s is less than 80% of the observed. MIROC5 variability
has the same persistence as the observations but ap-
proximately double the observed standard deviation sobs.
The trend of this model was similar to the observed, but
opposite in sign. GFDL-ESM2M variability has approx-
imately triplesobs, but approximately half the persistence
of the observations. This combination for GFDL con-
tributes to the large confidence interval of the associated
trend for this model in Fig. 2, although the trend itself
turns out to be small compared to the observations. If all
possible 33-yr trends in BoxDP are calculated in the
GFDL time series, then the maximum magnitude of the
trend in this model is only 97% of the observed 1980–
2012 trend, as discussed in section 5b(2). Therefore the
standard deviation s is not the dominant factor, since the
GFDL model could only get within 97% of the observed
trend, despite having s approximately triple sobs.

FIG. 4. Standard deviation (Pa), and lag-1-yr autocorrelation [a(1)] for observations and models. The standard
deviation (s) and a(1), is calculated using the SLP time series (1900–2012) of the observations (red star labeled 1) and
models (blue crosses labeled: 2–21). A 13-yr running average is applied before calculating the standard deviation
[s(13 yra)] in (b). The samequantities are calculated in the preindustrial runs and are shown as graymarkers.Only two
of these models are labeled as gray numbers. The number of model years available in each run is approximately 500.
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The analysis in the previous paragraph focuses on the
properties of interannual variability. The magnitude of
the variability on a longer time scale is particularly rel-
evant to the statistical significance of 33-yr trends and
the likelihood of obtaining a large trend from internal
variability alone.We explore this by first applying a 13-yr
running average [13 yra, based on the approach taken
by Power et al. (1999) and Folland et al. (2002)] to the data
before calculating the standard deviation [s(13yra)]. Only
four models exceed the observed sobs(13yra), which is 1.1
standard deviation from themultimodelmean ofs(13yra).
This is in contrast to a higher variance found at low fre-
quency examined in the CMIP3 models by Stoner et al.
(2009). Only two models (MIROC5 and CESM1-CAM5)
have trends (1980–2012) comparable in magnitude to the
observations. In these models a(1) is approximately equal
to the observed, and s(13yra) is slightly larger than ob-
served. There are two models (CMCC-CESM and
MIROC5) that have a positive 33-yr trend exceeding the
observations somewhere in the 1900–2012 time series
(see the purple bars on the corresponding models in
Fig. 2). These models all have s and s(13 yra) larger than
the observed, and they have the ability to exceed the
observed 1980–2012 trend once every 76yr on average.
We also calculated the standard deviation for running

averages of different lengths as a check of robustness of
the results. The standard deviation of an 8-yr running
average was examined and found there are approxi-
mately an equal number of models that are higher and
lower than the observations. However when examining
the standard deviation for a 10-, 13-, 17-, and 33-yr
running average, we found that there were at most three
models exceeding the corresponding observed standard
deviation in each case. Since the 10-, 13-, 17-, and 33-yr
running averages all exhibit a lower standard deviation
than observed, we choose the 13 yra as themetric for low
frequency variability, and to be consistent with Power
et al. (1999) and Folland et al. (2002).
These results show that onlywhen boths ands(13 yra)

were comparable in size to the observed low-frequency
variability could the observed trend be exceeded by the
models. In those particular models the observed trend
could be exceeded once in every 76yr on average.

b. Preindustrial climate simulations

We now examine the influence of internal variability
and persistence on the magnitude of the trends of the
preindustrial climate models, using the above analysis.
The standard deviation and a(1) in the preindustrial

runs are also presented in Fig. 4. Most of the pre-
industrial runs (30 out of 34 models) have a higher s
than observed (46.4 Pa), where this observed value is 1.1
standard deviation from the multimodel mean of s.

There are five models with a higher a(1) than observed
(0.32) as shown as gray dots in Fig. 4a. More broadly,
most of the models have a lower s(13 yra) than the ob-
served (15.3 Pa), shown as gray dots in Fig. 4b. The ob-
served sobs(13yra) is 0.9 standard deviation from the
multimodel mean of s(13yra). The GFDL model is an
exception as it has a very larges (approximately triple the
observed value), with a s(13 yra) 15% larger than ob-
served, and its a(1) is approximately 70% of the observed
value. This particular model has the ability to exceed the
observed 1980–2012 trend once every 125 yr on average.
These results show that there are few models which

have values of s, a(1), and s(13 yra) that are approxi-
mately equal to the corresponding observed values. But
even in these models the recent observed trend over the
period 1980–2012 is still rare in their preindustrial
models (on average a 1 in 212-yr event).

c. Ratio of variances

The results from the previous two sections show that
the low-frequency variability is lower than the observa-
tions both in the historical and preindustrial runs, and the
interannual variability is higher than observed. This be-
comes evident if the ratio s/s(13 yra) is plotted (not
shown): all historical models have a ratio greater than the
observed. We then calculated this ratio for the best-fit
first autoregressive [AR(1)] process for the observations
and all of the models. The fitting method is described in
appendix B. The ratio s/s(13 yra) is approximately the
same for the observations and the associated AR(1)
processes. However, the models under historical forcing
have a significantly highers/s(13 yra) than the associated
AR(1) processes and the observations. One explanation
is that the vast majority of the models (31 out of 34) in
both the historical and preindustrial runs, have a negative
lag-2 autocorrelation (MMM is 20.3) that is larger in
magnitude than the observed value (20.09). The auto-
correlations in themodels are not generally significant for
lags greater than two.Hence if we assume that themodels
behave as an AR(2) process, it can be shown that the
decadal variability decreases as the lag-2 autocorrelation
becomes more negative (see appendix E). We also cal-
culated the frequency spectra for all the models and the
observed data (not shown). The averaged model spectra
was compared to the observed, and was found to be
generally smaller than the observed for periods greater
than approximately 10yr. The averaged model spectrum
was generally larger than the observed at periods less
than 5 yr, and particularly at periods 2 and 4. The fact that
decadal variability in the models tends to be lower than
the observed might suggest to some readers that the
primary driver of decadal variability, stochastic forcing
(Liu 2012), may be too low. This is not the case, however,
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since the interannual variability in the models tends to be
larger than observed.
These results indicate that the model ENSOs are

more oscillatory than the observed ENSO. Higher than
observed oscillatory behavior will make it harder for
models to simulate long-term trends even if the level of
variability in interannual variability is realistic. In models
with a high degree of oscillatory behavior they can have
higher than observed levels of interannual variability and
still find it difficult to simulate large trends.

7. Projected model trends for RCP8.5 (2013–99)
compared to CMIP3

In sections 4, 5, and 6 we examined the ability of
models to simulate past trend. In this section we look
forward and examine trends over the period 2013–2100.
We compare the results with those obtained previously
by Power and Kociuba (2011b), who examined twenty-
first-century trends in CMIP3 model.
TheCMIP5 results are summarized in Fig. 5. Out of 35

models, 33 have positive trends in BoxW, and 25 of these
have trends that are statistically significant at the 95%
level. Only one model has a statistically significant
negative trend (95% level). This is the same model that

has a significant positive trend in BoxDP. There is much
less consensus on the sign of the trend for BoxE, as there
are 22 positive and 13 negative trends. However, there
are 16 models with positive trend significant at the 97%
level and six models with negative trend significant at
the 97% level. This results in a small (0.18 Pa yr21) but
highly statistically significant MMM trend in BoxE at
the 99.999% level. Twenty-five out of 35 models have
a negative trend in BoxDP (20.50 Pa yr21), which cor-
responds to a statistical significance at the 99.7% level,
assuming model independence (Power and Kociuba
2011b). Using the P98 method, the significance of the
MMM is at the 99.999% level. Only one model has
a positive trend that is statistically significant at the 95%
level. Power and Kociuba (2011b) previously analyzed
trends in the SRES A2 scenario and also found a strong
consensus on the sign of the trend for BoxDP, with 13 out
of 17 models (2002–98) having a negative trend
(20.343Pa yr21) for SRES A2. The trend is significant
at the 98% level. Power and Kociuba (2011b) also found
for SRES A1B that 14 out of 21 models have a negative
trend (20.122Pa yr21) that is significant at the 95%
level. The weakening of the WC in all scenarios tested
here is due to a larger sinking motion of air in BoxW
compared to BoxE.

FIG. 5. Projected model trends (Pa yr21) for the twenty-first century 2013–99 for RCP8.5.
This figure shows that 25 out of 35models have a negative trend in BoxDP, where 12 of these are
significant at the 99% level. Only 1 model has a significant positive trend at the 95% level. The
yellow line corresponds to themultimodelmean (MM in the figure), the gray lines represent the
95% confidence interval for MM.
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These results show that despite an inability of the
CMIP5 models to capture the recent strengthening of
theWC, the future projections in CMIP5models project
a weakening WC, consistent with projections in CMIP3
models (Power and Kociuba 2011b).

8. Summary and discussion

a. The past

We investigated the strength of theWalker circulation
(WC) in the observations and in CMIP5 climate models
over the two time periods 1900–2012 and 1980–2012.
While there is a degree of agreement between models

and observations in BoxDP trends over the full historical
period, there is no consensus on the sign of the trend
over the 33-yr period 1980–2012. The observed trend
over this 33-yr period is statistically significant at the
95% level, whereas none of the models have trends that
are significant at or above the 95% level.
Our analysis indicates that the observed trend in BoxDP

over the period 1980–2012 is inconsistentwith themodeled
trends over the same period. The largest inconsistency in
trends over the period 1980–2012 arises in the west Pacific
because themodels tend to exhibit an increase inMSLP in
BoxW, whereas the observations show a decline over the
same period (significant at the 94% level).
Four possible reasons can give rise to this situation:

1) the observed internal variability is rare (i.e., extremely
large); 2) the models do not faithfully represent (i) the
internal variability or (ii) the externally forced response;
3) the forcing applied to the models is deficient; or 4) the
observations are in error. We will now discuss each of
these candidates in turn.
The possibility that the observed trend over 1980–

2012 is dominated by internal variability was examined
using preindustrial runs of the climate models. It was
found that 33-yr trends arising from internal variability
with magnitudes greater than or equal to the magnitude
of the observed 1980–2012 trend were very rare events.
Such events were estimated to be 1.5 per 1000-yr events.
If we only consider models that have a similar level of
decadal variability to the observed, the trend becomes
a 1-in-212-yr event.
We also performed Monte Carlo analysis using an

AR(1) model (see appendix C), with parameters based
on the BoxDP observations, and we found that the ob-
served trend 1980–2012 occurred in only 1.3% of all
surrogate data. So if the inconsistency between obser-
vations and the model is due to internally generated
variability in the observations, assuming the models
faithfully represent internal variability, it would have
to be very large internal variability. We know that the
interdecadal Pacific oscillation switched from a positive

phase to a cool phase (England et al. 2014; Flato et al.
2014), which would have strengthened the WC. How-
ever, we do not know if this change is sufficiently strong
to cause the observed 1980–2012 trend. We hope to
address this issue in a future study.
To examine possibility 2(i), we examined decadal

variability in the models and compared it with the ob-
servations.We found that the level of decadal variability
in the models is too weak, despite the fact that the in-
terannual variability tends to be too high. The reason for
this apparent inconsistency is that the models tend to be
too oscillatory, and this makes it hard for the models to
generate decadal anomalies.
Possibility 2(ii) has been examined previously by

DiNezio et al. (2013). They concluded that the balance
between the forced response to aerosol forcing and
greenhouse gases may not be correct in the models
as a larger aerosol component is known to generate a
strengthening of theWC. It is possible, therefore, that the
models either overestimate a weakening in the WC due
to greenhouse gases or underestimate a strengthening
due to sulfate aerosols. Furthermore, addressing possi-
bility 3, the forcing itself might be in error (e.g., Schmidt
et al. 2014; Flato et al. 2014; Kirtman et al. 2014).
To assess the possibility that theremight be an error in

the gridded MSLP that accentuated the observed trend
over the period 1980–2012, we examined alternative
proxies for the WC based on Tahiti and Darwin MSLP
station data. While inconsistencies between observa-
tions and models were reduced, the results were mixed
and so the extent to which observational error is influ-
encing results obtained is unclear. It is interesting to
note that England et al. (2014) concluded that models
were not able to capture an observed strengthening of
tropical winds in recent times. This strongly suggests
that observational error (possibility 4) is not a major
factor in leading to the inconsistency in the BoxDP re-
sults we identify.
In summary, observed internal variability in the Pa-

cific and deficiencies in the simulation of Pacific decadal
variability, appear to be the main reasons for the ap-
parent inconsistency between model and observed
trends over the period 1980–2012. Other possible factors
include errors in the response to, or in the representa-
tion of, external forcing. Further research is needed to
provide a more accurate assessment of the relative im-
portance of possibilities 1–4 in causing the model-to-
observed inconsistency.

b. The future

We also examined the twenty-first century scenarios
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 and found there
was a strong consensus among the models that
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MSLP and BoxW increase, but the sign of change for
BoxE is ambiguous, and

there is a robust reduction in BoxDP, consistent with
the weakening of the WC.

These findings are consistent with our previous results
(Power and Kociuba 2011b) using CMIP3 data for sce-
narios SRES A1B and A2.
Given the inconsistencies discussed in section 8a, and

that problems relating to possibilities 2(ii) and 3 cannot
be ruled out, confidence in the twenty-first century
projections of the Walker circulation using the same
models is reduced.
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APPENDIX A

The P98 Method

In this appendix, we define the t value taking persis-
tence into account, derived by Power et al. (1998). The
expression for the t value is

t5
r

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N2 2)

12 (r/f )2

s

,

that has a t distribution, whereN is the number of years,
r is the temporal correlation between two time series x(t)
and y(t), and the serial correlation is embedded in the
quantity f:

f 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11 gxgy)

(12 gxgy)

vuut , where

gi 5
s2
i (1)

s2
i (0)

, and i is x or y ,

where si(t) is the standard deviation at lag t, which
provides a measure of persistence:

si(t)5
1

N2 1
!
N

i51
[xi(t)2 x)][xi(t2 t)2 x]:

Here x(t) 5 t, and y(t) is a Box SLP metric as described
in section 2.
The confidence interval, and significance level was

based on using the t value here, and this is defined as the
P98 method.

Other methods for estimating the confidence interval
are described in appendix D; however, we use the P98
method throughout this paper as it is a stricter test for
significance.

APPENDIX B

Standard Deviation of an AR(1) Process

This is the method used to calculate the standard de-
viation (annual and 13 yra) of an AR(1) process.
First a Monte Carlo analysis is performed using an

AR(1) model:

Xt 5 rxt211 «t .

Here « is a white noise process with zero mean, standard
deviation 5 s, and r 5 a(1), the autocorrelation co-
efficient 1-yr lag. We choose parameters r and s based
on the lag-1 autocorrelation and standard deviation of
a time series being tested. We generated 2000 surrogate
time series, each 113 yr long (which corresponds to the
period 1900–2012). The standard deviation s(1) and
s(13 yra) is calculated for each of the surrogates to
generate a probability distribution. The most likely
standard deviation s(1) and s(13 yra) is taken to be the
median of the associated distribution.

APPENDIX C

Trend Significance Using an AR(1) Process

The method of calculating the trend significance is as
follows.
We performed Monte Carlo analysis using an AR(1)

model,

Xt 5 rxt211 «t .

Here « is a white noise process with zero mean, standard
deviation 5 s, and r 5 a(1), the autocorrelation co-
efficient 1-yr lag. We choose parameters r 5 0.321 and
s 5 46.4 based on HadSLP2 BoxDP 1900–2012. We
generated 100 000 surrogate time series, each 33 yr long
(which corresponds to the period 1980–2012). A trend
was calculated for each surrogate. Only 1.3% of the
simulated time series had magnitudes greater than the
magnitude of the observed trend (3.0 Pa yr21), in-
dicating that the observed trend is statistically significant
at the 98.7% level.

32 JOURNAL OF CL IMATE VOLUME 28



APPENDIX D

Confidence Interval Estimation

The confidence intervals were recalculated using
various methods to check for any variation. We find that
if an AR(1) process is assumed for each of the models
and observations, then the statistical significance of the
trend is very similar to the values previously calculated.
We also fitted an AR(2) process to each model and the
observations. This increases the significance of the trend
in all cases, although none is statistically significant
above the 86% level. Similar results were found fitting
an AR(3) process to each model and the observations.
Finally, we determine the significance level empirically
from the time series. This was achieved by counting how
often the 1980–2012 trend appeared anywhere in the
time series within the period 1900–2012, which we define
here as a simple bootstrap method (SBS). This gave
a higher estimate of statistical significance in most
models, but only one model is significant at the 92%
level (HadGEM2-ES with trend 21.7 Pa yr21). This
model has a trend that is significant at the 56% level
when using the P98 method.

APPENDIX E

Spectral Ratio of Two AR(2) Processes

In this appendix, we show that for a given lag-1 au-
tocorrelation of an AR(2) process, the decadal vari-
ability decreases as the lag-2 autocorrelation value
becomes more negative.
An AR(2) process with zero mean is defined as

Yi(t, r1, r2)5C1Y(t2 1)1C2Y(t2 2)1sNzi(t) ,

where zi(t) is a Gaussian white noise process with zero
mean and unit standard deviation. The coefficients C1

and C2 can be calculated from the lag-1 and lag-2 au-
tocorrelations r1 and r2 (Wilks (1995),

C15
r1(12 r2)

12 r21
and

C25
r22 r21
12 r21

.

The theoretical spectral density function is (Wilks 1995)

S(f , r1, r2)5
4sN /n

11C2
1 1C2

2 2 2C1(12C2) cos(2pf )2 2C2 cos(4pf )
.

The frequency f is positive and less than 0.5 and n is the
number of points. If (r1, r2) is set to the observed values
(0.3, 20.1) we find that that the ratio S( f, 0.3, 20.1 2
b)/S( f, 0.3, 20.1) for any positive value b is ,1 for pe-
riods greater than approximately 9 yr, and tends to form
a peak .1 for periods shorter than approximately 9 yr.
This peak steepens as b increases.
This results shows that for anAR(2) process with a fixed

lag-1 autocorrelation, the decadal variability decreases as
the lag-2 autocorrelation value becomes more negative.

APPENDIX F

Expansions of Model Names in Table 2

ACCESS Australian Community Climate and
Earth-System Simulator

CanESM2 Second Generation Canadian Earth
System Model

CESM1-
BGC

Community Earth SystemModel, version
1, with Biogeochemistry

CESM1-
CAM5

CESM1 with Community Atmosphere
Model, version 5

CESM1-
WACCM

CESM1 with Whole Atmosphere Com-
munity Climate Model

CMCC-
CESM

Centro Euro-Mediterraneo per i Cam-
biamenti Climatici CarbonCycle Earth
System Model

GFDL-
ESM2M

Geophysical Fluid Dynamics Labora-
tory Earth System Model with Mod-
ular Ocean Model 4 (MOM4)
component

MIROC5 Model for Interdisciplinary Research
on Climate, version 5

MPI-ESM-
LR

Max Planck Institute Earth System
Model, low resolution

MPI-ESM-
MR

Max Planck Institute Earth System
Model, medium resolution

MPI-
ESM-P

Max Planck Institute Earth System
Model, paleo
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