9,446 research outputs found

    Chesapeake Bay Oysters: Legal Theses on Exotic Species

    Get PDF

    Recent advances in malaria genomics and epigenomics

    Get PDF
    Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3 years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines

    Chemical phosphorus removal from municipal wastewater by the addition of waste alum sludge to the activated sludge system

    Get PDF
    Includes bibliography.In many cases, waterworks waste alum sludge is disposed of by discharging it into a stream. In this investigation the disposal of alum sludge to activated sludge systems treating municipal sewage is investigated. The advantage is that it is a better method of alum sludge disposal, and moreover the addition of alum sludge removes phosphorus from the wastewater through chemical precipitation. Two long sludge age (20 days) Modified Ludzack Ettinger (MLE) predenitrification systems receiving unsettled municipal wastewater at a controlled concentration of 500mg COD/l as influent were operated for a period of 305 days, one as an Experimental system and the other as a Control system. The anoxic mass fraction was large (70), to mimic many long sludge age nitrification/denitrification systems in operation in South Africa. Nitrate was added into the anoxic reactors to maintain anoxic conditions so that biological excess phosphorus removal would not take place and interfere with the chemical removal performance

    Magnetization profile for impurities in graphene nanoribbons

    Full text link
    The magnetic properties of graphene-related materials and in particular the spin-polarised edge states predicted for pristine graphene nanoribbons (GNRs) with certain edge geometries have received much attention recently due to a range of possible technological applications. However, the magnetic properties of pristine GNRs are not predicted to be particularly robust in the presence of edge disorder. In this work, we examine the magnetic properties of GNRs doped with transition-metal atoms using a combination of mean-field Hubbard and Density Functional Theory techniques. The effect of impurity location on the magnetic moment of such dopants in GNRs is investigated for the two principal GNR edge geometries - armchair and zigzag. Moment profiles are calculated across the width of the ribbon for both substitutional and adsorbed impurities and regular features are observed for zigzag-edged GNRs in particular. Unlike the case of edge-state induced magnetisation, the moments of magnetic impurities embedded in GNRs are found to be particularly stable in the presence of edge disorder. Our results suggest that the magnetic properties of transition-metal doped GNRs are far more robust than those with moments arising intrinsically due to edge geometry.Comment: submitte

    A consideration of frequent causes of malocclusion

    Get PDF
    n/

    Eighty years of food-web response to interannual variation in discharge recorded in river diatom frustules from an ocean sediment core.

    Get PDF
    Little is known about the importance of food-web processes as controls of river primary production due to the paucity of both long-term studies and of depositional environments which would allow retrospective fossil analysis. To investigate how freshwater algal production in the Eel River, northern California, varied over eight decades, we quantified siliceous shells (frustules) of freshwater diatoms from a well-dated undisturbed sediment core in a nearshore marine environment. Abundances of freshwater diatom frustules exported to Eel Canyon sediment from 1988 to 2001 were positively correlated with annual biomass of Cladophora surveyed over these years in upper portions of the Eel basin. Over 28 years of contemporary field research, peak algal biomass was generally higher in summers following bankfull, bed-scouring winter floods. Field surveys and experiments suggested that bed-mobilizing floods scour away overwintering grazers, releasing algae from spring and early summer grazing. During wet years, growth conditions for algae could also be enhanced by increased nutrient loading from the watershed, or by sustained summer base flows. Total annual rainfall and frustule densities in laminae over a longer 83-year record were weakly and negatively correlated, however, suggesting that positive effects of floods on annual algal production were primarily mediated by "top-down" (consumer release) rather than "bottom-up" (growth promoting) controls

    Impurity segregation in graphene nanoribbons

    Full text link
    The electronic properties of low-dimensional materials can be engineered by doping, but in the case of graphene nanoribbons (GNR) the proximity of two symmetry-breaking edges introduces an additional dependence on the location of an impurity across the width of the ribbon. This introduces energetically favorable locations for impurities, leading to a degree of spatial segregation in the impurity concentration. We develop a simple model to calculate the change in energy of a GNR system with an arbitrary impurity as that impurity is moved across the ribbon and validate its findings by comparison with ab initio calculations. Although our results agree with previous works predicting the dominance of edge disorder in GNR, we argue that the distribution of adsorbed impurities across a ribbon may be controllable by external factors, namely an applied electric field. We propose that this control over impurity segregation may allow manipulation and fine-tuning of the magnetic and transport properties of GNRs.Comment: 5 pages, 4 figures, submitte

    Extended Timed Up and Go assessment as a clinical indicator of cognitive state in Parkinson\u27s disease

    Get PDF
    Objective: To evaluate a modified extended Timed Up and Go (extended-TUG) assessment against a panel of validated clinical assessments, as an indicator of Parkinson’s disease (PD) severity and cognitive impairment. Methods: Eighty-seven participants with idiopathic PD were sequentially recruited from a Movement Disorders Clinic. An extended-TUG assessment was employed which required participants to stand from a seated position, walk in a straight line for 7 metres, turn 180 degrees and then return to the start, in a seated position. The extended-TUG assessment duration was correlated to a panel of clinical assessments, including the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), Quality of Life (PDQ-39), Scales for Outcomes in Parkinson’s disease (SCOPA-Cog), revised Addenbrooke’s Cognitive Index (ACE-R) and Barratt’s Impulsivity Scale 11 (BIS-11). Results: Extended-TUG time was significantly correlated to MDS-UPDRS III score and to SCOPA-Cog, ACE-R (p\u3c0.001) and PDQ-39 scores (p\u3c0.01). Generalized linear models determined the extended-TUG to be a sole variable in predicting ACE-R or SCOPA-Cog scores. Patients in the fastest extended-TUG tertile were predicted to perform 8.3 and 13.4 points better in the SCOPA-Cog and ACE-R assessments, respectively, than the slowest group. Patients who exceeded the dementia cut-off scores with these instruments exhibited significantly longer extended-TUG times. Conclusions: Extended-TUG performance appears to be a useful indicator of cognition as well as motor function and quality of life in PD, and warrants further evaluation as a first line assessment tool to monitor disease severity and response to treatment. Poor extended-TUG performance may identify patients without overt cognitive impairment form whom cognitive assessment is needed
    corecore