20 research outputs found

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level

    Karyotypic analysis of adult pluripotent stem cells

    No full text
    Three categories of precursor cells have been identified in postnatal mammals: tissue-committed progenitor cells, germ layer lineage-committed stem cells and lineage-uncommitted pluripotent stem cells. Progenitor cells are the immediate precursors of differentiated tissues. Germ layer lineage stem cells can be induced to form multiple cell types belonging to their respective ectodermal, mesodermal, and endodermal embryological lineages. Pluripotent stem cells will form somatic cell types from all three primary germ layer lineages. Progenitor cells demonstrate a finite life span before replicative senescence and cell death occur. Both germ layer lineage stem cells and pluripotent stem cells are telomerase positive and display extensive capabilities for self-renewal. Stem cells which undergo such extensive replication have the potential for undergoing mutations that may subsequently alter cellular functions. Gross mutations in the genome may be visualized as chromosomal aneuploidy and/or chromosomes that appear aberrant. This study was designed to determine whether any gross genomic mutations occurred within the adult pluripotent stem cells. Karyotypic analysis was performed using pluripotent stem cells purified from adult male rats using established procedures. Giemsa Banding was used in conjuction with light microscopy to visualize metaphase chromosome spreads. To date over 800 metaphase spreads have been analyzed. We found that the metaphase spreads averaged 42 chromosomes and concluded that these pluripotent stem cells isolated from adult rats have a normal karyotype

    The knowledge most worth having: Otis W. Caldwell (1869?1947) and the rise of the general science course

    No full text

    Management von Netzwerkorganisationen – Zum Stand der Forschung

    No full text

    Handbook of organizational measurement

    No full text

    All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

    No full text
    International audienceRapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50–300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space

    Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo’s Third Observing Run

    No full text
    International audienceWe search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses

    Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo

    No full text
    We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~Hz to 2~kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample sub-bands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and rr-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7×10267.7\times 10^{-26} and 7.8×10267.8\times 10^{-26} near 200~Hz for the supernova remnants G39.2--0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and rr-mode amplitude reach 107\lesssim 10^{-7} and 105 \lesssim 10^{-5}, respectively, at frequencies above 400\sim 400~Hz for the closest supernova remnant G266.2--1.2/Vela Jr
    corecore