18,600 research outputs found
First-principle density-functional calculation of the Raman spectra of BEDT-TTF
We present a first-principles density-functional calculation for the Raman
spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement
with experimental results. We show that a planar structure is not a stable
state of a neutral BEDT-TTF molecule. We consider three possible conformations
and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200
Non-linear Microwave Surface Impedance of Epitaxial HTS Thin Films in Low DC Magnetic Fields
We have carried out non-linear microwave (8 GHz) surface impedance
measurements of three YBaCuO thin films in dc magnetic fields
(parallel to c axis) up to 12 mT using a coplanar resonator technique. In zero
dc field the three films, deposited by the same method, show a spread of
low-power residual surface resistance, and penetration depth,
(T=15 K) within a factor of 1.9. However, they exhibit dramatically
different microwave field, dependences of the surface resistance,
, but universal dependence. Application of a dc field was
found to affect not only absolute values of and , but the functional
dependences and as well. For some of the samples
the dc field was found to decrease below its zero-field low-power value.Comment: 4 pages, 4 figures. To be published in IEEE Trans. Appl. Supercond.,
June 199
Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors
We give a quantitative analysis of the previously published nuclear magnetic
resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer
salts by using the phenomenological spin fluctuation model of Moriya, and
Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the
model gives a good quantitative description of the data in the metallic phases
of several k-(ET)2X materials. These materials display antiferromagnetic
correlation lengths which increase with decreasing temperature and grow to
several lattice constants by T_nmr. It is shown that the fact that the
dimensionless Korringa ratio is much larger than unity is inconsistent with a
broad class of theoretical models (such as dynamical mean-field theory) which
neglects spatial correlations and/or vertex corrections. For materials close to
the Mott insulating phase the nuclear spin relaxation rate, the Knight shift
and the Korringa ratio all decrease significantly with decreasing temperature
below T_nmr. This cannot be described by the M-MMP model and the most natural
explanation is that a pseudogap, similar to that observed in the underdoped
cuprate superconductors, opens up in the density of states below T_nmr. Such a
pseudogap has recently been predicted to occur in the dimerised organic charge
transfer salts materials by the resonating valence bond (RVB) theory. We
propose specific new experiments on organic superconductors to elucidate these
issues. For example, measurements to see if high magnetic fields or high
pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.
Status of Outer Planet Global Reference Atmospheric Model (GRAM) Upgrades
The inability to test planetary spacecraft in the flight environment prior to a mission requires engineers to rely on ground-based testing and models of the vehicle and expected environments. One of the most widely used engineering models of the atmosphere is the Global Reference Atmospheric Model (GRAM) developed and maintained by the NASA Marshall Space Flight Center (MSFC). The NASA Science Mission Directorate (SMD) has provided funding support to upgrade the GRAMs
Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole
During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident
A provisional database for the silicon content of foods in the United Kingdom
Si may play an important role in bone formation and connective tissue metabolism. Although biological interest in this element has recently increased, limited literature exists on the Si content of foods. To further our knowledge and understanding of the relationship between dietary Si and human health, a reliable food composition database, relevant for the UK population, is required. A total of 207 foods and beverages, commonly consumed in the UK, were analysed for Si content. Composite samples were analysed using inductively coupled plasma–optical emission spectrometry following microwave-assisted digestion with nitric acid and H2O2. The highest concentrations of Si were found in cereals and cereal products, especially less refined cereals and oat-based products. Fruit and vegetables were highly variable sources of Si with substantial amounts present in Kenyan beans, French beans, runner beans, spinach, dried fruit, bananas and red lentils, but undetectable amounts in tomatoes, oranges and onions. Of the beverages, beer, a macerated whole-grain cereal product, contained the greatest level of Si, whilst drinking water was a variable source with some mineral waters relatively high in Si. The present study provides a provisional database for the Si content of UK foods, which will allow the estimation of dietary intakes of Si in the UK population and investigation into the role of dietary Si in human health.<br /
Self-Organized Criticality model for Brain Plasticity
Networks of living neurons exhibit an avalanche mode of activity,
experimentally found in organotypic cultures. Here we present a model based on
self-organized criticality and taking into account brain plasticity, which is
able to reproduce the spectrum of electroencephalograms (EEG). The model
consists in an electrical network with threshold firing and activity-dependent
synapse strenghts. The system exhibits an avalanche activity power law
distributed. The analysis of the power spectra of the electrical signal
reproduces very robustly the power law behaviour with the exponent 0.8,
experimentally measured in EEG spectra. The same value of the exponent is found
on small-world lattices and for leaky neurons, indicating that universality
holds for a wide class of brain models.Comment: 4 pages, 3 figure
The effect of differences in time to detection of circulating microbubbles on the risk of decompression sickness
Circulating microbubbles (CMB) are frequently detected prior to the appearance of symptoms of Decompression Sickness (DCS). It is difficult to analyze the effect of CMB on symptoms due to differences in the time to detection of CMB. This paper uses survival analysis models to evaluate the risk of symptoms in the presence of CMB. Methods: Information on 81 exposures to an altitude of 6,400 m (6.5 psi) for a period of three hours, with simulated extravehicular activities, was examined. The presence or absence of CMB was included as a time dependent covariate of the Cox proportional hazards regression model. Using this technique, the subgroup of exposures with CMB was analyzed further. Mean (S.D.) time in minutes to onset of CMB and symptoms were 125 (63) and 165 (33) respectively, following the three hours exposure. The risk of symptoms (17/81) increased 14 times in the presence of CMB, after controlling for variations in time to detection of CMB. Further, the risk was lower when time to detection of CMB was greater than 60 minutes (risk ratio = 0.96; 95 percent confidence intervals = 0.94 - 0.99 0.99 P less than 0.01) compared to CMB before 60 minutes at altitude. Conclusions: Survival analysis showed that individual risk of DCS changes significantly due to variations in time to detection of CMB. This information is important in evaluating the risk of DCS in the presence of CMB
- …