19,401 research outputs found

    Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors

    Full text link
    We review the interplay of frustration and strong electronic correlations in quasi-two-dimensional organic charge transfer salts, such as k-(BEDT-TTF)_2X and Et_nMe_{4-n}Pn[Pd(dmit)2]2. These two forces drive a range of exotic phases including spin liquids, valence bond crystals, pseudogapped metals, and unconventional superconductivity. Of particular interest is that in several materials there is a direct transition as a function of pressure from a spin liquid Mott insulating state to a superconducting state. Experiments on these materials raise a number of profound questions about the quantum behaviour of frustrated systems, particularly the intimate connection between spin liquids and superconductivity. Insights into these questions have come from a wide range of theoretical techniques including first principles electronic structure, quantum many-body theory and quantum field theory. In this review we introduce the basic ideas of the field by discussing a simple frustrated Heisenberg model with four spins. We then describe the key experimental results, emphasizing that for two materials, k-(BEDT-TTF)_2Cu_2(CN)_3 and EtMe_3Sb[Pd(dmit)_2]_2, there is strong evidence for a spin liquid ground state, and for EtMe_3P[Pd(dmit)_2]_2, a valence bond solid ground state. We review theoretical attempts to explain these phenomena, arguing that this can be captured by a Hubbard model on the anisotropic triangular lattice at half filling, and that resonating valence bond wavefunctions can capture most of the essential physics. We review evidence that this model can have a spin liquid ground state for a range of parameters that are realistic for the relevant materials. We conclude by summarising the progress made thus far and identifying some of the key questions still to be answered.Comment: Major rewrite. New material added and many typos corrected. 67 pages, 41 figures. Thanks to those who commented on the previous versio

    Symmetry of the superconducting order parameter in frustrated systems determined by the spatial anisotropy of spin correlations

    Get PDF
    We study the resonating valence bond (RVB) theory of the Hubbard-Heisenberg model on the half-filled anisotropic triangular lattice. Varying the frustration changes the wavevector of maximum spin correlation in the Mott insulating phase. This, in turn, changes the symmetry of the superconducting state, that occurs at the boundary of the Mott insulating phase. We propose that this physics is realised in several families of quasi-two-dimensional organic superconductors.Comment: To appear in Phys. Rev. Lett. - 5 pages, 4 fig

    An examination of the types of leading questions used by investigative interviewers of children

    Full text link
    Purpose &ndash; The purpose of this paper is to examine the nature of leading questions used by a representative sample of investigative interviewers of children. In particular, it examined whether these interviewers use the type of questions that are known to elicit reports of false activities or events among child samples.Design/methodology/approach &ndash; A total of 82 police officers who were authorized to conduct interviews with alleged child abuse victims conducted individual mock interviews with children aged 5-7 years. The focus of the interviews was an event that was staged in the children\u27s school a week earlier. Prior to the interview, each officer was provided with accurate and inaccurate information about the event, including details about an activity that did not occur. The officers\u27 task was to elicit as detailed and accurate account of the event as possible using the techniques they would &ldquo;normally&rdquo; use in the field.Findings &ndash; Although the officers refrained from using coercive interview techniques, two problematic types of questions were relatively common. These include: questions that presumed that an activity/detail occurred that had not been previously mentioned by the child; and questions that included highly specific details about an activity. Both of these techniques had featured in prior laboratory research on children\u27s false event narratives.Research limitations/implications &ndash; These results support the need for better training techniques for assisting officers to avoid the use of leading questions.Originality/value &ndash; While it is well established that investigative interviewers do sometimes use leading questions when interviewing children, this is the first study to specify the incidence of various types of leading questions.of leading questions.<br /

    Interplay of frustration, magnetism, charge ordering, and covalency in a model of Na0.5CoO2

    Get PDF
    We investigate an effective Hamiltonian for Na0.5CoO2 that includes the electrostatic potential due to the ordered Na ions and strong electronic correlations. This model displays a subtle interplay between metallic and insulating phases and between charge and magnetic order. For realistic parameters, the model predicts an insulating phase with similarities to a covalent insulator. We show that this interpretation gives a consistent explanation of experiments on Na0.5CoO2, including the small degree of charge ordering, the small charge gap, the large moment, and the optical conductivity.Comment: 5 pages, 4 figures. Text revised making more emphasis on model properties. Figures compacte

    Spin Fluctuations and the Pseudogap in Organic Superconductors

    Get PDF
    We show that there are strong similarities in the spin lattice relaxation of non-magnetic organic charge transfer salts, and that these similarities can be understood in terms of spin fluctuations. Further, we show that, in all of the kappa-phase organic superconductors for which there is nuclear magnetic resonance data, the energy scale for the spin fluctuations coincides with the energy scale for the pseudogap. This suggests that the pseudogap is caused by short-range spin correlations. In the weakly frustrated metals k-(BEDT-TTF)_2Cu[N(CN)_2]Br, k-(BEDT-TTF)_2Cu(NCS)_2, and k-(BEDT-TTF)_2Cu[N(CN)_2]Cl (under pressure) the pseudogap opens at the same temperature as coherence emerges in the (intralayer) transport. We argue that this is because the spin correlations are cut off by the loss of intralayer coherence at high temperatures. We discuss what might happen to these two energy scales at high pressures, where the electronic correlations are weaker. In these weakly frustrated materials the data is well described by the chemical pressure hypothesis (that anion substitution is equivalent to hydrostatic pressure). However, we find important differences in the metallic state of k-(BEDT-TTF)_2Cu_2(CN)_3, which is highly frustrated and displays a spin liquid insulating phase. We also show that the characteristic temperature scale of the spin fluctuations in (TMTSF)_2ClO_4 is the same as superconducting critical temperature, which may be evidence that spin fluctuations mediate the superconductivity in the Bechgaard salts.Comment: 7 pages, 4 figures; to appear in PR

    Sensitivity of the photo-physical properties of organometallic complexes to small chemical changes

    Full text link
    We investigate an effective model Hamiltonian for organometallic complexes that are widely used in optoelectronic devices. The two most important parameters in the model are JJ, the effective exchange interaction between the π\pi and π∗\pi^* orbitals of the ligands, and ϵ∗\epsilon^*, the renormalized energy gap between the highest occupied orbitals on the metal and on the ligand. We find that the degree of metal-to-ligand charge transfer (MLCT) character of the lowest triplet state is strongly dependent on the ratio ϵ∗/J\epsilon^*/J. ϵ∗\epsilon^* is purely a property of the complex and can be changed significantly by even small variations in the complex's chemistry, such as replacing substituents on the ligands. We find that that small changes in ϵ∗/J\epsilon^*/J can cause large changes in the properties of the complex, including the lifetime of the triplet state and the probability of injected charges (electrons and holes) forming triplet excitations. These results give some insight into the observed large changes in the photophysical properties of organometallic complexes caused by small changes in the ligands.Comment: Accepted for publication in J. Chem. Phys. 14 pages, 9 figures, Supplementary Info: 15 pages, 17 figure

    First-principle density-functional calculation of the Raman spectra of BEDT-TTF

    Get PDF
    We present a first-principles density-functional calculation for the Raman spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement with experimental results. We show that a planar structure is not a stable state of a neutral BEDT-TTF molecule. We consider three possible conformations and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200

    Advanced combined iodine dispenser and detector

    Get PDF
    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals

    Comparison of the phase diagram of the half-filled layered organic superconductors with the phase diagram of the RVB theory of the Hubbard-Heisenberg model

    Get PDF
    We present an resonating valence bond (RVB) theory of superconductivity for the Hubbard--Heisenberg model on an anisotropic triangular lattice. We show that these calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta', kappa and lambda phases of (BEDT-TTF)_2X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)_2X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a d_{x^2-y^2} superconductor with a small superfluid stiffness and a pseudogap with d_{x^2-y^2} symmetry. The Mott--Hubbard transition can be driven either by increasing the on-site Coulomb repulsion, U, or by changing the anisotropy of the two hopping integrals, t'/t. Our results suggest that the ratio t'/t plays an important role in determining the phase diagram of the organic superconductors.Comment: 4 pages, 3 figur

    Triple redundant hydrogen sensor with in situ calibration

    Get PDF
    To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented
    • …
    corecore