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We present a resonating-valence-bond theory of superconductivity for the Hubbard-Heisenberg model
on an anisotropic triangular lattice. Our calculations are consistent with the observed phase diagram of the
half-filled layered organic superconductors, such as the �, �0, �, and � phases of �BEDT-TTF�2X
[bis(ethylenedithio)tetrathiafulvalene] and �BETS�2X [bis(ethylenedithio)tetraselenafulvalene]. We find a
first order transition from a Mott insulator to a dx2�y2 superconductor with a small superfluid stiffness and
a pseudogap with dx2�y2 symmetry.

DOI: 10.1103/PhysRevLett.94.047004 PACS numbers: 74.20.Mn, 71.30.+h, 74.62.–c, 74.70.Kn
Describing strongly correlated electronic systems is one
of the outstanding challenges of theoretical physics. In
particular, one would like to understand if different model
materials embody the same underlying physics. The sim-
ilarities between the cuprates and the layered organics
superconductors [1,2] suggest that similar physics may
be realized in both classes of materials. A powerful ap-
proach to chemically complex materials is to define mini-
mal models [3], which can then be treated at various levels
of approximation [4,5]. In this Letter we take such an
approach. We argue that the observed phase diagram of
the half-filled layered organic superconductors ( 1

2 LOS) is
well described by the resonating-valence-bond (RVB) the-
ory of the Hubbard-Heisenberg model. Our theory repro-
duces the first order Mott transition and predicts dx2�y2
superconductivity [6], a small superfluid stiffness [7], and a
pseudogap [8].

Layered organic superconductors form several crystal
structures, some of which, such as the �, �0, �, and �
phases, are strongly dimerized, others, e.g., the �, �00, and
	 phases, are not. The chemical composition of these
materials is D2X where D is an organic donor molecule,
for example, BEDT-TTF (ET) or BETS, and X is an anion.
Crystals consist of alternating layers of donor molecules
and anions [9]. In both the dimerized and undimerized salts
the anion accepts one electron from a pair of donor mole-
cules which leads, at the level of band structure, to an
insulating anionic layer and a metallic donor layer.
Quantum chemistry suggests that the band structure of
the undimerized materials is well described by treating
each donor molecule as a site in a (quarter-filled) tight-
binding model [10]. In the dimerized materials the intra-
dimer hopping integral is large enough that the band struc-
ture can be described by a half-filled tight-binding model
with each site representing a dimer [3,7].

1
2 LOS display insulating, metallic, superconducting,

‘‘bad metallic,’’ and (possibly) pseudogap [8] phases.
The nature of the superconducting state in 1

2 LOS is con-
troversial [6]: the pairing is thought to be singlet [6], but
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experiments have lead to both s-wave and d-wave scenar-
ios being proposed. Both phononic and nonphononic pair-
ing mechanisms have previously been considered [4,5,7].
The superfluid stiffness [11] is much smaller than is pre-
dicted by BCS theory but is too large for fluctuations in the
phase of the order parameter to be important [7].

Figure 1 shows the phase diagram of �-�ET�2X as a
function of pressure (both hydrostatic and ‘‘chemical’’)
and temperature. Other 1

2 LOS have similar phase diagrams
[9]. A simple explanation of this phase diagram is as
follows [1,3]: there is a strong on-site Coulomb repulsion,
U, which causes the ambient pressure (Mott) insulating
state. The application of hydrostatic pressure or varying the
anion (often thought of as applying ‘‘chemical pressure’’)
reduces U=W, where W is the bandwidth, and leads to a
superconducting state caused by strong electronic correla-
tions. The bad metal phase is due to nearly localized
electrons as one crosses over from the Fermi liquid to the
Mott insulator.

It has been argued that the Hubbard model on an aniso-
tropic triangular lattice is a minimal model for the layered
organic superconductors [3]. A dynamical mean-field the-
ory (DMFT) of the Hubbard model on a hypercubic lattice
gives a good quantitative description of the competition
between the Mott insulator, the bad metal, and the Fermi
liquid [12,13]. However, a mean-field treatment of the
positive U Hubbard model will not correctly describe the
materials as it neglects important spin correlations that
arise from superexchange. We therefore consider the
Hubbard-Heisenberg model, which can be derived [14]
from the Hubbard model in the limit of large, but finite,
U. The Hamiltonian is

H � �
X

i�

n̂i� � t
X

fijg�

ĉyi�ĉj� � t0
X

hiji�

ĉyi�ĉj�

� J
X

fijg

Ŝi � Ŝj � J0
X

hiji

Ŝi � Ŝj �U
X

i

n̂i"n̂i#; (1)

where ĉ�y�i� annihilates (creates) an electron on-site i with
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FIG. 1 (color online). The pressure-temperature phase diagram
of �-�ET�2X. Top: data from 1H NMR and ac susceptibility (dark
blue diamonds show the transition from a nonmagnetic state to
an antiferromagnetically ordered state, light blue diamonds show
the metal-insulator transition [24]), magnetization (pink pluses
[25]), thermal expansion (filled purple circles [26]), and resis-
tivity [red squares (filled indicates a first order Mott transition,
empty indicates a crossover from insulating to metallic behaviors
[23]), filled green triangles [12], gray stars [27], and open purple
diamond [28]]. We have offset the data to allow for the effect of
‘‘chemical pressure.’’ P � 0 corresponds to ambient pressure for
X � Cu�N�CN�2�Cl [12,23–26]. The chemical pressure is in-
dicated by the arrows on the abscissa. H8-NCS ) X �
Cu�NCS�2 [26,28] and H8-Br ) X � Cu�N�CN�2�Br [26,27].
D8-Br indicates the effective chemical pressure of X �
Cu�N�CN�2�Br with the ET molecule fully deuterated [27].
Bottom: a schematic version of the same diagram is shown.
The glassy transition between the ethylene liquid and frozen in
disorder phases results from conformational disorder in the
organic molecule [6,26].
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spin �, Ŝi is the Heisenberg spin operator, n̂i� is the
number operator, and fijg and hiji indicate sums over
nearest neighbors and next nearest neighbors across one
diagonal only [3], respectively. In principle J ’ 4t2=U and
04700
J0 ’ 4t02=U due to superexchange. However, our mean-
field treatment will not correctly describe the renormaliza-
tion of the bare parameters. Therefore, we treat t, t0, J, J0,
andU as independent parameters. To reduce our parameter
space we choose J � t=3 and J0 � t02=3t [15], which
correspond roughly to the values of J and J0 extracted
from experiments on the insulating phase of the layered
organics [3,16]. Thus in the calculations presented below
we only vary two parameters: t0=t and U=t.

Our treatment of the Hubbard-Heisenberg Hamiltonian
(1) is based on Anderson’s RVB theory [17]. Although the
RVB wave function is a poor approximation for the
Heisenberg model on a square lattice, it was recently
shown that it is a good trial wave function for some
frustrated Heisenberg models [18]. These models are
closely related to ours as many of the 1

2 LOS are expected
[3,16] to have J0=J � �t0=t�2 in the relevant range. Further
evidence that the RVB theory is a much better theory for
the triangular lattice than it is for the square lattice comes
from the critical value of the on-site Coulomb repulsion,
Uc, at which the Mott transition occurs. The square lattice
is insulating for arbitrarily small values of U, whereas we
find that the RVB theory givesUc ’ 10:3t. On the isotropic
triangular lattice exact diagonalization of finite lattices
gives Uc � 12t [19] and we find that Uc ’ 12:4t in the
RVB theory.

Anderson’s RVB state, jRVBi, is given by performing a
Gutzwiller projection, P̂G �

P
i�1� �n̂i"n̂i#�, on the BCS

wave function, jBCSi, i.e., jRVBi � P̂GjBCSi. Here � is a
variational parameter which controls the fraction of doubly
occupied sites, d. A detailed analysis of the RVB theory of
the Hubbard-Heisenberg model on the square lattice was
reported by Gan et al. [20].

Following the spirit of Ref. [21], we make the Gutzwiller
approximation [22], viz., hĉyi�ĉj�iRVB � gthĉ

y
i�ĉj�iBCS and

hŜi � ŜjiRVB � gShŜi � ŜjiBCS where hOi � h jOj i.
Counting arguments show that [20,22] at half-filling gt �
8�1� 2d�d and gS � 4�1� 2d�2. The Gutzwiller approxi-
mation has several advantages: its simplicity allows some
analytic progress to be made and allows one to consider
infinite systems. However, the Gutzwiller approximation
suppresses spin and charge fluctuations in the Hubbard
model [22]. We have already sidestepped this problem
somewhat by explicitly including the spin exchange terms
in the Hubbard-Heisenberg model. Our theory produces a
Mott insulating state that is a spin liquid rather than the
antiferromagnetic insulating state observed in most (but
not all [16]) 1

2 LOS; however, generalization of jRVBi to
allow for antiferromagnetism should not significantly alter
the phase diagram. Clearly an important test will be to
project jRVBi onto the results of exact diagonalization of
finite systems for the Hubbard model on the anisotropic
triangular lattice.

Making the Hartree-Fock-Gorkov approximation leads
to two coupled gap equations, �k � �

P
k0Vk�k0

�k0

2Ek0
and
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 k � ~"k �
P

k0Vk�k0
 k0
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, where Vk��3

2gS�J�coskx�

cosky��J
0cos�kx�ky��, ~"k� ~��2gt�t�coskx�cosky��

t0cos�kx�ky��, and Ek �
�����������������������������������������
�~"k �  k�

2 � j�kj
2

p
. d is

minimized variationally and the renormalized chemical
potential, ~�, is chosen to ensure half-filling [20].
The two mean fields are a Hartree-Fock term,  k �
P

k0Vk�k0 hĉyk0"
ĉk0"iBCS, and an anomalous term, �k �P

k0Vk�k0 hĉk0"ĉ�k0#iBCS, where ĉk� is the Fourier trans-
form of ĉi�.

We solve the coupled gap equations self-consistently in
reciprocal space on a 120� 120 mesh. We do not enforce
any symmetry constraints on the order parameters and find
that it has dx2�y2 symmetry; this is the pairing symmetry
most compatible with experiments on 1

2 LOS [6].
For the Hubbard model gt � Z, the quasiparticle weight

(the factor by which many-body effects reduce the band-
width and Drude weight and enhance the effective mass,
m�). In Fig. 2 we plot gt againstU for several values of t0=t.
For all values of t0=twe find that at some critical value, Uc,
there is a first order transition from a superconducting state
(gt � 0) to an insulating state (gt � 0). This is consistent
with the first order superconductor-insulator transition ob-
served experimentally in 1

2 LOS [12,23]. Note that near the
Mott transition gt is reduced (and hence m� is enhanced by
a factor of 3 or 4), consistent with the large effective mass
seen in the layered organic superconductors close to the
insulating state [7]. Previous weak coupling approaches [4]
do not capture this large mass renormalization. gt is closely
related to the reduction in the Drude weight due to strong
correlations. Figure 2 is quantitatively similar to exact
calculations of the Drude weight for the Hubbard model
on an isotropic triangular model (c.f., Fig. 4 of Ref. [19]).
6 8 10 12
U/t

0

0.2

0.4

0.6

0.8

g
t

0 0.2 0.4 0.6
t’/t

9

10

11

12

U
/t

Mott insulator

superconductor
d x

2
-y

2

FIG. 2 (color online). gt � Z as a function of U for various
values of t0=t, throughout J � t=3 and J0 � t02=3t [15]. Here we
plot t0 � 0:7t (dashed line), t0 � 0:3t (dot-dashed line), and t0 �
0 (solid line). For each value of t0=t we find a first order Mott
transition at some critical value of U, Uc, from a superconduct-
ing state (gt � 0) to an insulating state (gt � 0). The inset shows
the phase diagram for the model.
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The fact that gt < 1 leads to a reduced superfluid stiffness
[20] as is observed in 1

2 LOS. However, if we interpret our
results in the simplest manner [21] they suggest that the
most correlated materials have the most strongly sup-
pressed superfluid stiffness, which is the opposite trend
to that found experimentally [7,11].

~�k �
P

k0Vk�k0 hĉk0"ĉ�k0#iRVB � gt�k is the supercon-
ducting order parameter. Figure 3 shows the mean of j�kj

and j~�kj as functions of U for several values of t0=t. ~�k �

�k indicates a pseudogap, which is predicted to be largest
near the Mott transition and have dx2�y2 symmetry. The
angle dependence of the pseudogap could be measured by
angle resolved photoemission or angle resolved magneto-
resistance oscillations. We plot the mean of j�kj and j~�kj
as functions of t0=t for fixedU in the inset to Fig. 3. Varying
t0=t can lead to a suppression of superconductivity and can
even drive the Mott transition as can be seen from the phase
diagram of the model (inset to Fig. 2).

Our results suggest that the effects of the anisotropy of
the triangular lattice are important for the organic super-
conductors. We suggest that the large value of t0=t and
hence of J0=J stabilizes the RVB state in 1

2 LOS [18]. The
RVB state naturally explains the first order transition be-
tween the Mott insulator and a dx2�y2 superconductor.
Further, our results suggest that the simple picture [1,3]
in which the only role of hydrostatic and chemical pressure
is to vary U=W is not sufficient to explain the phase
diagram of 1

2 LOS. It appears that the value of t0=t, and
hence J0=J also plays a crucial role in determining the
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FIG. 3 (color online). j�kj and j~�kj (both in units of t) as
functions of U for various values of t0=t and J � t=3 and J0 �
t02=3t [15]. ~�k � gt�k and the bar indicates averaging over the
Brillouin zone (i.e., fk �

P
kfk=

P
k). Here we plot t0 � 0:7t

(blue: j~�kj solid line; j�kj dashed line), t0 � 0:3t (red: j~�kj

double dot-dashed line; j�kj long-dashed line), and t0 � 0

(black: j~�kj dot-double-dashed line; j�kj dot-dashed line).
The inset shows j�kj (dashed line) and j~�kj (solid line) against
t0=t with U � 9t.
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behavior of these materials. t0=t controls the degree of
nesting of the Fermi surface and therefore directly controls
the stability of the Mott insulator, whereas J0=J determines
Vk which controls the stability of the superconducting
phase. This is why variations in t0=t can even drive the
Mott transition at a fixed U. Clearly, the physics of the
anisotropic triangular lattice is qualitatively different from
that of square lattice.

Combining our results with those from DMFT studies of
the Hubbard model allows one to reproduce the main
features of the phase diagram of 1

2 LOS (Fig. 1). This is
consistent with the claim [3] that the Hubbard model is the
minimal model for 1

2 LOS. (We stress that this theory is not
applicable to the quarter-filled layered organic supercon-
ductors [10] or the Bechgaard salts [9].) However, caution
is required here. Although calculations (e.g., [12]) based on
the Hubbard model can give good quantitative agreement
with experiments on 1

2 LOS, one does not know a priori
how to map the experimental parameter space (pressure,
temperature, and chemical composition) onto the theoreti-
cal parameter space (t0=t, U=t, etc.). Therefore, an out-
standing problem is to discover whether quantum
chemistry predicts the large variations of the Hubbard
parameters with pressure required for quantitative agree-
ment with experiment.

We have presented an RVB theory of the Hubbard-
Heisenberg model on the anisotropic triangular lattice.
We argued that the RVB state may be a good trial wave
function for 1

2 LOS because the values of J0=J deduced
from quantum chemistry and experiment are comparable
to those for which the RVB state appears to be a good
approximation. Our calculations show a first order Mott
transition from an insulating state to a dx2�y2 superconduc-
tor. A similar first order Mott transition is seen in experi-
ments on 1

2 LOS. The Mott transition can be driven by
increasing either U=t or t0=t. Further, at a fixed U, super-
conductivity is strongly suppressed by increasing t0=t. This
suggests that the value of t0=tmay be more important in the
layered organic superconductors than has previously been
appreciated. The superconducting state has a reduced su-
perfluid stiffness as is observed in the 1

2 LOS. The RVB
theory predicts that there is a pseudogap with dx2�y2
symmetry.

It is a pleasure to thank J. P. Barjaktarevic, N. Bonesteel,
J. Fjaerestad, J. B. Marston, A. P. Micolich, F. L. Pratt,
P. Wzietek, and K. Yang for stimulating conversations
and Brown University (B. J. P.), Oxford University,
and Rutherford Appleton Laboratory for hospitality.
Numerics were enabled by an APAC Grant. This work
was funded by the Australian Research Council.

Note added.—After completing this work we be-
came aware of some similar results reported elsewhere
[29,30].
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