604 research outputs found

    Remembering Nina R. Kestin

    Get PDF
    There are many people whose lives are different because Ricki Kestin was in it. I am one of those people. You will understand when I tell you that I did not want to speak today; that I did not want to tell you what I knew or thought or felt about Ricki

    Remembering Nina R. Kestin

    Get PDF
    There are many people whose lives are different because Ricki Kestin was in it. I am one of those people. You will understand when I tell you that I did not want to speak today; that I did not want to tell you what I knew or thought or felt about Ricki

    Systems Thinking and Simulation Modeling to Inform Childhood Obesity Policy and Practice

    Get PDF
    Objectives: In 2007, 31.7% of Georgia adolescents in grades 9-12 were overweight or obese. Understanding the impact of policies and interventions on obesity prevalence among young people can help determine statewide public health and policy strategies. This article describes a systems model, originally launched in 2008 and updated in 2014, that simulates the impact of policy interventions on the prevalence of childhood obesity in Georgia through 2034

    Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    Full text link
    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58181/2/jpconf7_78_012072.pd

    Development of an atmospheric climate model with self-adapting grid and physics

    Full text link
    An adaptive grid dynamical core for a global atmospheric climate model has been developed. Adaptations allow a smooth transition from hydrostatic to non-hydrostatic physics at small resolution. The adaptations use a parallel program library for block-wise adaptive grids on the sphere. This library also supports the use of a reduced grid with coarser resolution in the longitudinal direction as the poles are approached. This permits the use of a longer time step since the CFL number restriction (CFL < 1) in a regular longitude-latitude grid is most severe in the zonal direction at high latitudes. Several tests show that our modelling procedures are stable and accurate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49004/2/jpconf5_16_049.pd

    Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    Get PDF
    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms such as CALIOP
    • …
    corecore