42 research outputs found

    Role of Receptor-Interacting Protein 140 in human fat cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mice lacking <it>Receptor-interacting protein 140 (RIP140) </it>have reduced body fat which at least partly is mediated through increased lipid and glucose metabolism in adipose tissue. In humans, <it>RIP140 </it>is lower expressed in visceral white adipose tissue (WAT) of obese versus lean subjects. We investigated the role of <it>RIP140 </it>in human subcutaneous WAT, which is the major fat depot of the body.</p> <p>Methods</p> <p>Messenger RNA levels of <it>RIP140 </it>were measured in samples of subcutaneous WAT from women with a wide variation in BMI and in different human WAT preparations. <it>RIP140 </it>mRNA was knocked down with siRNA in <it>in vitro </it>differentiated adipocytes and the impact on glucose transport and mRNA levels of target genes determined.</p> <p>Results</p> <p><it>RIP140 </it>mRNA levels in subcutaneous WAT were decreased among obese compared to lean women and increased by weight-loss, but did not associate with mitochondrial DNA copy number. <it>RIP140 </it>expression increased during adipocyte differentiation <it>in vitro </it>and was higher in isolated adipocytes compared to corresponding pieces of WAT. Knock down of <it>RIP140 </it>increased basal glucose transport and mRNA levels of <it>glucose transporter 4 </it>and <it>uncoupling protein-1</it>.</p> <p>Conclusions</p> <p>Human <it>RIP140 </it>inhibits glucose uptake and the expression of genes promoting energy expenditure in the same fashion as the murine orthologue. Increased levels of human <it>RIP140 </it>in subcutaneous WAT of lean subjects may contribute to economize on energy stores. By contrast, the function and expression pattern does not support that <it>RIP140 </it>regulate human obesity.</p

    PKCΞ΅ Stimulated Arginine Methylation of RIP140 for Its Nuclear-Cytoplasmic Export in Adipocyte Differentiation

    Get PDF
    Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.In this study, we determined the activated PKCepsilon as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCepsilon-phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphorylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm.This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity

    Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance

    Get PDF
    Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease

    Absence of RIP140 Reveals a Pathway Regulating glut4-Dependent Glucose Uptake in Oxidative Skeletal Muscle through UCP1-Mediated Activation of AMPK

    Get PDF
    Skeletal muscle constitutes the major site of glucose uptake leading to increased removal of glucose from the circulation in response to insulin. Type 2 diabetes and obesity are often associated with insulin resistance that can be counteracted by exercise or the use of drugs increasing the relative proportion of oxidative fibers. RIP140 is a transcriptional coregulator with a central role in metabolic tissues and we tested the effect of modulating its level of expression on muscle glucose and lipid metabolism in two mice models. Here, we show that although RIP140 protein is expressed at the same level in both oxidative and glycolytic muscles, it inhibits both fatty acid and glucose utilization in a fiber-type dependent manner. In RIP140-null mice, fatty acid utilization increases in the extensor digitorum longus and this is associated with elevated expression of genes implicated in fatty acid binding and transport. In the RIP140-null soleus, depletion of RIP140 leads to increased GLUT4 trafficking and glucose uptake with no change in Akt activity. AMPK phosphorylation/activity is inhibited in the soleus of RIP140 transgenic mice and increased in RIP140-null soleus. This is associated with increased UCP1 expression and mitochondrial uncoupling revealing the existence of a signaling pathway controlling insulin-independent glucose uptake in the soleus of RIP140-null mice. In conclusion, our findings reinforce the participation of RIP140 in the maintenance of energy homeostasis by acting as an inhibitor of energy production and particularly point to RIP140 as a promising therapeutic target in the treatment of insulin resistance

    Retinoic Acid Mediates Long-Paced Oscillations in Retinoid Receptor Activity: Evidence for a Potential Role for RIP140

    Get PDF
    Mechanisms that underlie oscillatory transcriptional activity of nuclear receptors (NRs) are incompletely understood. Evidence exists for rapid, cyclic recruitment of coregulatory complexes upon activation of nuclear receptors. RIP140 is a NR coregulator that represses the transactivation of agonist-bound nuclear receptors. Previously, we showed that RIP140 is inducible by all-trans retinoic acid (RA) and mediates limiting, negative-feedback regulation of retinoid signaling.Here we report that in the continued presence of RA, long-paced oscillations of retinoic acid receptor (RAR) activity occur with a period ranging from 24 to 35 hours. Endogenous expression of RIP140 and other RA-target genes also oscillate in the presence of RA. Cyclic retinoid receptor transactivation is ablated by constitutive overexpression of RIP140. Further, depletion of RIP140 disrupts cyclic expression of the RA target gene HOXA5. Evidence is provided that RIP140 may limit RAR signaling in a selective, non-redundant manner in contrast to the classic NR coregulators NCoR1 and SRC1 that are not RA-inducible, do not cycle, and may be partially redundant in limiting RAR activity. Finally, evidence is provided that RIP140 can repress and be induced by other nuclear receptors in a manner that suggests potential participation in other NR oscillations.We provide evidence for novel, long-paced oscillatory retinoid receptor activity and hypothesize that this may be paced in part, by RIP140. Oscillatory NR activity may be involved in mediating hormone actions of physiological and pathological importance

    Integrin Ξ±5Ξ²1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation

    Get PDF
    During Xenopus gastrulation Ξ±5Ξ²1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the Ξ±5 subunit and regulates the activity of Ξ±5Ξ²1 integrin. The interaction of kermit2 with Ξ±5Ξ²1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates Ξ±5Ξ²1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the Ξ±5Ξ²1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the Ξ±5Ξ²1 integrin through receptor endocytosis

    PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes

    No full text
    Glucose homeostasis is controlled by insulin in part through the stimulation of glucose transport in muscle and fat cells. This insulin signaling pathway requires phosphatidylinositol (PI) 3-kinase-mediated 3\u27-polyphosphoinositide generation and activation of Akt/protein kinase B. Previous experiments using dominant negative constructs and gene ablation in mice suggested that two phosphoinositide phosphatases, SH2 domain-containing inositol 5\u27-phosphatase 2 (SHIP2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulate this insulin signaling pathway. Here we directly tested this hypothesis by selectively inhibiting the expression of SHIP2 or PTEN in intact cultured 3T3-L1 adipocytes through the use of short interfering RNA (siRNA). Attenuation of PTEN expression by RNAi markedly enhanced insulin-stimulated Akt and glycogen synthase kinase 3alpha (GSK-3alpha) phosphorylation, as well as deoxyglucose transport in 3T3-L1 adipocytes. In contrast, depletion of SHIP2 protein by about 90% surprisingly failed to modulate these insulin-regulated events under identical assay conditions. In control studies, no diminution of insulin signaling to the mitogen-activated protein kinases Erk1 and Erk2 was observed when either PTEN or SHIP2 were depleted. Taken together, these results demonstrate that endogenous PTEN functions as a suppressor of insulin signaling to glucose transport through the PI 3-kinase pathway in cultured 3T3-L1 adipocytes

    RNAi-based gene silencing in primary mouse and human adipose tissues

    No full text
    Cultured adipocyte cell lines are a model system widely used to study adipose function, but they exhibit significant physiological differences compared with primary cells from adipose tissue. Here we report short interfering RNA-based methodology to selectively attenuate gene expression in mouse and human primary adipose tissues as a means of rapidly validating findings made in cultured adipocyte cell lines. The method is exemplified by depletion of the PTEN phosphatase in white adipose tissue (WAT) from mouse and humans, which increases Akt phosphorylation as expected. This technology is also shown to silence genes in mouse brown adipose tissue. Previous work revealed upregulation of the mitochondrial protein UCP1 in adipose cells from mice lacking the gene for the transcriptional corepressor RIP140, whereas in cultured adipocytes, loss of RIP140 has a little effect on UCP1 expression. Application of our method to deplete RIP140 in primary mouse WAT elicited markedly increased oxygen consumption and expression of UCP1 that exactly mimics the phenotype observed in RIP140-null mice. This ex-vivo method of gene silencing should be useful in rapid validation studies as well as in addressing the depot- and species-specific functions of genes in adipose biology

    GEP(100)/BRAG2: Activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin and Ξ±-catenin

    No full text
    GEP(100) (p100) was identified as an ADP-ribosylation factor (ARF) guanine nucleotide-exchange protein (GEP) that partially colocalized with ARF6 in the cell periphery. p100 preferentially accelerated guanosine 5[Ξ³-thio]triphosphate (GTPΞ³S) binding by ARF6, which participates in protein trafficking near the plasma membrane, including receptor recycling, cell adhesion, and cell migration. Here we report that yeast two-hybrid screening of a human fetal brain cDNA library using p100 as bait revealed specific interaction with Ξ±-catenin, which is known as a regulator of adherens junctions and actin cytoskeleton remodeling. Interaction of p100 with Ξ±-catenin was confirmed by coimmunoprecipitation of the endogenous proteins from human HepG2 or CaSki cells, although colocalization was difficult to demonstrate microscopically. Ξ±-Catenin enhanced GTPΞ³S binding by ARF6 in vitro in the presence of p100. Depletion of p100 by small interfering RNA (siRNA) treatment in HepG2 cells resulted in E-cadherin content 3-fold that in control cells and blocked hepatocyte growth factor-induced redistribution of E-cadherin, consistent with a known role of ARF6 in this process. F-actin was markedly decreased in normal rat kidney (NRK) cells overexpressing wild-type p100, but not its GEP-inactive mutants, also consistent with the conclusion that p100 has an important role in the activation of ARF6 for its functions in both E-cadherin recycling and actin remodeling
    corecore