13 research outputs found

    Absolute lymphocyte and neutrophil counts in neonatal ischemic brain injury

    Get PDF
    Objectives: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. Methods: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n=12), acute ischemic stroke (n=15), and transient tachypnea of the newborn (n=48) was conducted; transient tachypnea of the newborn neonates were used as the control group. Absolute neutrophil count and absolute lymphocyte count at three time-intervals (0–12, 12–36, and 36–60 h after birth) were collected, and neutrophil- to-lymphocyte ratio was calculated. Results: Hypoxic-ischemic encephalopathy+total-body cooling neonates demonstrated significant time-interval-dependent changes in absolute lymphocyte count and neutrophil-to-lymphocyte ratio levels compared to transient tachypnea of the newborn and acute ischemic stroke patients. Pooled analysis of absolute lymphocyte count for neonates with acute ischemic stroke and hypoxic-ischemic encephalopathy (not hypoxic-ischemic encephalopathy+total-body cooling) revealed that absolute lymphocyte count changes occurring at 0–12 h are likely due to disease progression, rather than total-body cooling treatment. Conclusion: These data suggest that the neutrophil/lymphocyte response is modulated following neonatal ischemic brain injury, representing a possible target for therapeutic intervention. However, initial severity of hypoxic-ischemic encephalopathy among these patients could also account for the observed changes in the immune response to injury. Thus, additional work to clarify the contributions of cooling therapy and disease severity to neutrophil/lymphocyte response following hypoxic- ischemic encephalopathy in neonates is warranted

    Absolute lymphocyte and neutrophil counts in neonatal ischemic brain injury.

    Get PDF
    Objectives: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. Methods: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n = 12), acute ischemic stroke (n = 15), and transient tachypnea of the newborn (n = 48) was conducted; transient tachypnea of the newborn neonates were used as the control group. Absolute neutrophil count and absolute lymphocyte count at three time-intervals (0-12, 12-36, and 36-60 h after birth) were collected, and neutrophil-to-lymphocyte ratio was calculated. Results: Hypoxic-ischemic encephalopathy + total-body cooling neonates demonstrated significant time-interval-dependent changes in absolute lymphocyte count and neutrophil-to-lymphocyte ratio levels compared to transient tachypnea of the newborn and acute ischemic stroke patients. Pooled analysis of absolute lymphocyte count for neonates with acute ischemic stroke and hypoxic-ischemic encephalopathy (not hypoxic-ischemic encephalopathy + total-body cooling) revealed that absolute lymphocyte count changes occurring at 0-12 h are likely due to disease progression, rather than total-body cooling treatment. Conclusion: These data suggest that the neutrophil/lymphocyte response is modulated following neonatal ischemic brain injury, representing a possible target for therapeutic intervention. However, initial severity of hypoxic-ischemic encephalopathy among these patients could also account for the observed changes in the immune response to injury. Thus, additional work to clarify the contributions of cooling therapy and disease severity to neutrophil/lymphocyte response following hypoxic-ischemic encephalopathy in neonates is warranted

    Executive (dys)function after stroke: special considerations for behavioral pharmacology

    Get PDF
    Stroke is a world-wide leading cause of death and long-term disability with concurrent secondary consequences that are largely comprised of mood dysfunction, as well as sensory, motor, and cognitive deficits. This review focuses on the cognitive deficits associated with stroke specific to executive dysfunction (including decision making, working memory, and cognitive flexibility) in humans, non-human primates, and additional animal models. Further, we review some of the cellular and molecular underpinnings of the individual components of executive dysfunction and their neuroanatomical substrates after stroke, with an emphasis on the changes that occur during biogenic monoamine neurotransmission. We concentrate primarily on changes in the catecholaminergic (dopaminergic and noradrenergic) and serotonergic systems at the levels of neurotransmitter synthesis, distribution, re-uptake, and degradation. We also discuss potential secondary stroke-related behavioral deficits (specifically, post-stroke depression as well as drug-abuse potential and addiction) and their relationship with stroke-induced deficits in executive function, an especially important consideration given that the average age of the human stroke population is decreasing. In the final sections, we address pharmacological considerations for the treatment of ischemia and the subsequent functional impairment, as well as current limitations in the field of stroke and executive function research

    Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology

    Get PDF
    Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process – synthesis, distribution, and breakdown – and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function – impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI

    Interleukin-27 impairs BCG antigen clearance and T cell stimulatory potential by neonatal dendritic cells

    No full text
    Bacille Calmette Guérin (BCG) is a live-attenuated vaccine for protection against Mycobacterium tuberculosis. Despite high disease protection in infancy and early childhood, it generates poor long-term protection against pulmonary tuberculosis. We hypothesized that the unique immune profile that includes elevated interleukin (IL)-27, contributes to insufficient protection from routine neonatal BCG administration. Using a novel method to obtain neonatal progenitors, we showed that neonatal bone marrow-derived dendritic cells (BMDCs) increase production of IL-27 following BCG stimulation. To study the effect of IL-27 on BMDCs, we utilized mice deficient for IL-27 receptor-α (KO). We observed greater BCG clearance and elevated IL-12 production in the neonatal KO BMDCs compared to WT. BMDCs from KO neonates in turn stimulated more interferon-γ production from CD4+ T cells isolated from BCG-vaccinated mice than WT counterparts. To further confirm the importance of these findings, C57BL/6 mice were vaccinated as neonates in line with the approach to human vaccination in high TB burden regions. IL-27 levels progressively increased through 5 weeks and were significantly elevated in mice vaccinated with BCG compared to controls. The impact of IL-27 production on clearance of BCG was significant as KO mice cleared BCG from peripheral tissues that persisted in WT mice 5 weeks post-vaccination. These results are the first to highlight the suppressive role of IL-27 on DCs in the neonatal period and the impact on neonatal immune responses to BCG

    Absolute lymphocyte and neutrophil counts in neonatal ischemic brain injury

    Get PDF
    Objectives: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. Methods: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n = 12), acute ischemic stroke (n = 15), and transient tachypnea of the newborn (n = 48) was conducted; transient tachypnea of the newborn neonates were used as the control group. Absolute neutrophil count and absolute lymphocyte count at three time-intervals (0–12, 12–36, and 36–60 h after birth) were collected, and neutrophil-to-lymphocyte ratio was calculated. Results: Hypoxic-ischemic encephalopathy + total-body cooling neonates demonstrated significant time-interval-dependent changes in absolute lymphocyte count and neutrophil-to-lymphocyte ratio levels compared to transient tachypnea of the newborn and acute ischemic stroke patients. Pooled analysis of absolute lymphocyte count for neonates with acute ischemic stroke and hypoxic-ischemic encephalopathy (not hypoxic-ischemic encephalopathy + total-body cooling) revealed that absolute lymphocyte count changes occurring at 0–12 h are likely due to disease progression, rather than total-body cooling treatment. Conclusion: These data suggest that the neutrophil/lymphocyte response is modulated following neonatal ischemic brain injury, representing a possible target for therapeutic intervention. However, initial severity of hypoxic-ischemic encephalopathy among these patients could also account for the observed changes in the immune response to injury. Thus, additional work to clarify the contributions of cooling therapy and disease severity to neutrophil/lymphocyte response following hypoxic-ischemic encephalopathy in neonates is warranted

    Myeloid-Derived Suppressor Cells Gain Suppressive Function during Neonatal Bacterial Sepsis

    No full text
    Neonates are at an increased risk of an infectious disease. This is consistent with an increased abundance of myeloid-derived suppressor cells (MDSCs) compared with older children and adults. Using a murine model of neonatal bacterial sepsis, we demonstrate that MDSCs modulate their activity during an infection to enhance immune suppressive functions. A gene expression analysis shows that MDSCs increased NOS2, Arg-1 and IL-27p28 expression in vitro and in vivo in response to Escherichia coli O1:K1:H7 and this is regulated at the level of the gene expression. Changes in the effector gene expression are consistent with increased enzymatic activity and cytokine secretion. The neonatal MDSCs express toll-like receptor (TLR) 2, 4 and 5 capable of recognizing pathogen-associated molecular patterns (PAMPS) on E. coli. However, a variable level of effector expression was achieved in response to LPS, peptidoglycan or flagellin. Individual bacterial PAMPs did not stimulate the expression of Arg-l and IL-27p28 equivalently to E. coli. However, the upregulation of NOS2 was achieved in response to LPS, peptidoglycan and flagella. The increased immune suppressive profile translated to an enhanced suppression of CD4+ T cell proliferation. Collectively, these findings increase our understanding of the dynamic nature of MDSC activity and suggest that these cells abundant in early life can acquire activity during an infection that suppresses protective immunity

    Effects of an α5GABAA inverse agonist on MK-801-induced learning deficits in an incremental repeated acquisition task

    No full text
    N -methyl-D-aspartate receptors (NMDARs) are essential for several kinds of synaptic plasticity and play a critical role in learning and memory. Deficits in NMDAR functioning may be partially responsible for the learning and memory deficits associated with aging and numerous diseases. Administration of MK-801, a noncompetitive NMDAR antagonist, is commonly used as a preclinical model of NMDAR dysfunction. The objective of this study was to assess the effects of α5GABAA receptor inhibition on learning deficits in the incremental repeated acquisition (IRA) task induced by acute MK-801 administration. The IRA task, commonly used to examine factors that affect learning, begins with a single response and increments to progressively longer chains throughout a single session as behavior meets preset criteria. MK-801 (0.03–0.5 mg/kg, intraperitoneally), administered 10 min pretesting, produced a significant dose-dependent decrease in measures of IRA performance at doses greater than or equal to 0.25 mg/kg. The MK-801-induced deficit was attenuated after treatment with an α5GABAA receptor inverse agonist, L-655,708 (1 mg/kg, intraperitoneally). The present study provides the focus for, and supports the feasibility of, further in-depth definitive studies examining α5GABAA receptor inhibition as a suitable candidate for the attenuation of NMDAR-related deficits

    Image_3_IL-27 alters inflammatory cytokine expression and limits protective immunity against Mycobacterium tuberculosis in a neonatal BCG vaccination model.tif

    No full text
    BackgroundEfforts to control tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), have been hampered by the immense variability in protection from BCG vaccination. While BCG protects young children from some forms of TB disease, long-term protection against pulmonary disease is more limited, suggesting a poor memory response. New vaccines or vaccination strategies are required to have a realistic chance of eliminating TB disease. In TB endemic areas, routine immunization occurs during the neonatal period and as such, we hypothesized that inadequate protective immunity elicited by BCG vaccination could be the result of the unique early-life immune landscape. Interleukin (IL)-27 is a heterodimeric cytokine with immune suppressive activity that is elevated in the neonatal period.ObjectiveWe investigated the impact of IL-27 on regulation of immune responses during neonatal BCG vaccination and protection against Mtb.MethodsHere, we used a novel model of neonatal vaccination and adult aerosol challenge that models the human timeline of vaccine delivery and disease transmission.ResultsOverall, we observed improved control of Mtb in mice unresponsive to IL-27 (IL-27Rα-/-) that was consistent with altered expression patterns of IFN-γ and IL-17 in the lungs. The balance of these cytokines with TNF-α expression may be key to effective bacterial clearance.ConclusionsOur findings suggest the importance of evaluating new vaccines and approaches to combat TB in the neonatal population most likely to receive them as part of global vaccination campaigns. They further indicate that temporal strategies to antagonize IL-27 during early life vaccination may improve protection.</p
    corecore