43 research outputs found

    Advanced imaging capabilities by incorporating plasmonics and metamaterials in detectors

    Get PDF
    Ultraviolet detection is often required to be made in the presence of a strong background of solar radiation which needs to be suppressed, but materials limitations at these wavelengths can impact both filter and sensor performance. In this work, we explore the use of 1D photonic bandgap structures integrated directly onto a Si sensor that can operate with solar blindness. These filters take advantage of the improved admittance with silicon to significantly improve throughput over conventional stand-alone bandpass filter elements. At far ultraviolet wavelengths these filters require the use of non-absorbing dielectrics such as the metal fluoride materials of MgF_2, AlF_3 and LiF. The latest performance of these 1D multilayer filters on Si photodiodes and CCD imaging sensors is demonstrated. We have also extended these 1D structures to more complex multilayers guided by the design concepts of metamaterials and metatronics, and to 2D patterned plasmonic hole array filters fabricated in aluminum. The performance of sensors and test filter structures is presented with an emphasis on UV throughput

    Advanced imaging capabilities by incorporating plasmonics and metamaterials in detectors

    Get PDF
    Ultraviolet detection is often required to be made in the presence of a strong background of solar radiation which needs to be suppressed, but materials limitations at these wavelengths can impact both filter and sensor performance. In this work, we explore the use of 1D photonic bandgap structures integrated directly onto a Si sensor that can operate with solar blindness. These filters take advantage of the improved admittance with silicon to significantly improve throughput over conventional stand-alone bandpass filter elements. At far ultraviolet wavelengths these filters require the use of non-absorbing dielectrics such as the metal fluoride materials of MgF_2, AlF_3 and LiF. The latest performance of these 1D multilayer filters on Si photodiodes and CCD imaging sensors is demonstrated. We have also extended these 1D structures to more complex multilayers guided by the design concepts of metamaterials and metatronics, and to 2D patterned plasmonic hole array filters fabricated in aluminum. The performance of sensors and test filter structures is presented with an emphasis on UV throughput

    Full Spectral Image Encryption in the Infrared using an Electrically Reconfigurable Metasurface and a Matched Detector

    No full text
    The ability of metasurfaces to manipulate optical waves in the spatial and spectral domain provides new avenues for secure data storage. In this work, an encryption system consisting of an electrically tunable metasurface and a matched detector is presented for secure encryption of grayscale images in the 8ā€“12ā€‰Ī¼m wavelength range. In the proposed scheme, the encrypted image corresponds to the spatially varying thermal intensity of the metasurface as captured by its matched detector. In contrast to previous metasurfaceā€based encryption schemes, the current approach leverages the full spectral response of the associated photonic devices to achieve secure encryption while circumventing the need for an increased device size. Using examples of singleā€ and multiā€image encryption, it is shown that the optical properties of either the metasurface or matched detector alone do not reveal any meaningful information about the encrypted image, thereby validating the security of the proposed scheme. The electrical tunability of the metasurface provides additional security as the image can only be retrieved by operating it at a predefined voltage level. The results presented in this study provide intriguing possibilities for the development of compact and secure object tagging and antiā€counterfeiting applications in the infrared

    High temperature, experimental thermal memory based on optical resonances in photonic crystal slabs

    No full text
    We present an experimental thermal memory with direct optical control and readout. Information is stored in the internal temperature of the device, while laser illumination is used to read, write, and erase stored bits. Our design is based on an absorptive optical resonance in a silicon photonic crystal slab. When the slab is illuminated by a laser with a wavelength close to the resonance, the optical absorption is nonlinear with power, resulting in thermo-optic bistability. We experimentally demonstrate bistability in a fabricated device and show the reading, writing, and erasing of a single memory bit. A hybrid optothermal model shows good agreement with the experiment. Time dependent measurements show that the experimental write/erase times are less than 500 Āµs. We demonstrate that memory reliability is maintained over 106 cycles, with less than 3% change in the transmission values for the memory ON and OFF states. Our approach allows operation in high temperature and/or highly fluctuating temperature environment up to 100 Ā°C or greater

    Advances in Theory of Photonic Crystals

    No full text
    corecore