47 research outputs found

    Computational modeling and validation for hypersonic inlets

    Get PDF
    Hypersonic inlet research activity at NASA is reviewed. The basis is the experimental tests performed with three inlets: the NASA Lewis Research Center Mach 5, the McDonnell Douglas Mach 12, and the NASA Langley Mach 18. Both three-dimensional parabolized Navier-Stokes and Navier-Stokes codes were used to compute the flow within the three inlets. Modeling assumptions in the codes involve the turbulence model, the nature of the boundary layer, shock wave boundary layer interaction, and the flow spilled to the outside of the inlet. Use of the codes in conjunction with the experimental data are helping to develop a clearer understanding of the inlet flow physics and to focus on the modeling improvements required in order to arrive at validated codes

    Application of computational fluid dynamics in high speed aeropropulsion

    Get PDF
    The application is described of computational fluid dynamics (CFD) to a hypersonic propulsion system. An overview of the problems associated with a propulsion system of this type is presented, highlighting the special role that CFD plays in the design of said systems

    CFD for hypersonic propulsion

    Get PDF
    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered

    AWT Circuit Aerothermodynamics Discussion

    Get PDF
    The aerothermodynamic performance of the Altitude Wind Tunnel is assessed in order to define the proper component and system configurations to insure desired tunnel flow. This is accomplished through experimental model testing of components, coupled components, complete circuit and research models. Viewgraphs show what types of computer codes were used on the various sections of the tunnel as well as how and where experimental data was acquired

    Viscous analyses for flow through subsonic and supersonic intakes

    Get PDF
    A parabolized Navier-Stokes code was used to analyze a number of diffusers typical of a modern inlet design. The effect of curvature of the diffuser centerline and transitioning cross sections was evaluated to determine the primary cause of the flow distortion in the duct. Results are presented for S-shaped intakes with circular and transitioning cross sections. Special emphasis is placed on verification of the analysis to accurately predict distorted flow fields resulting from pressure-driven secondary flows. The effect of vortex generators on reducing the distortion of intakes is presented. Comparisons of the experimental and analytical total pressure contours at the exit of the intake exhibit good agreement. In the case of supersonic inlets, computations of the inlet flow field reveal that large secondary flow regions may be generated just inside of the intake. These strong flows may lead to separated flow regions and cause pronounced distortions upstream of the compressor

    Least-squares finite element method for fluid dynamics

    Get PDF
    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples

    Optimal least-squares finite element method for elliptic problems

    Get PDF
    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system

    CFD validation experiments for internal flows

    Get PDF
    Computational Fluid Dynamics (CFD) validation experiments at NASA Lewis Research Center are described. The material presented summarizes the research in three areas: Inlets, Ducts and Nozzles; Turbomachinery; and Chemically Reacting Flows. The specific validation activities are concerned with shock-boundary layer interactions, vortex generator effects, large low speed centrifugal compressor measurements, transonic fan shock structure, rotor/stator kinetic energy distributions, stator wake shedding characteristics, boundary layer transition, multiphase flow and reacting shear layers. These experiments are intended to provide CFD validation data for the internal flow fields within aerospace propulsion system components

    Current Lewis Turbomachinery Research: Building on our Legacy of Excellence

    Get PDF
    This Wu Chang-Hua lecture is concerned with the development of analysis and computational capability for turbomachinery flows which is based on detailed flow field physics. A brief review of the work of Professor Wu is presented as well as a summary of the current NASA aeropropulsion programs. Two major areas of research are described in order to determine our predictive capabilities using modern day computational tools evolved from the work of Professor Wu. In one of these areas, namely transonic rotor flow, it is demonstrated that a high level of accuracy is obtainable provided sufficient geometric detail is simulated. In the second case, namely turbine heat transfer, our capability is lacking for rotating blade rows and experimental correlations will provide needed information in the near term. It is believed that continuing progress will allow us to realize the full computational potential and its impact on design time and cost

    Trends in aeropropulsion research and their impact on engineering education

    Get PDF
    This presentation is concerned with the trends in aeropropulsion both in the U.S. and abroad and the impact of these trends on the educational process in our universities. In this paper, we shall outline the new directions for research which may be of interest to educators in the aeropropulsion field. Awareness of new emphases, such as emission reductions, noise control, maneuverability, speed, etc., will have a great impact on engineering educators responsible for restructuring courses in propulsion. The information presented herein will also provide some background material for possible consideration in the future development of propulsion courses. In describing aeropropulsion, we are concerned primarily with air-breathing propulsion; however many observations apply equally as well to rocket engine systems. Aeropropulsion research needs are primarily motivated by technologies required for advanced vehicle systems and frequently driven by external requirements such as economic competitiveness, environmental concern and national security. In this presentation, vehicle based research is first described, followed by a discussion of discipline and multidiscipline research necessary to implement the vehicle-focused programs. The importance of collaboration in research and the training of future researchers concludes this presentation
    corecore