39 research outputs found

    Beyond the Scavenging of Reactive Oxygen Species (ROS): Direct Effect of Cerium Oxide Nanoparticles in Reducing Fatty Acids Content in an In Vitro Model of Hepatocellular Steatosis

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic accumulation of lipids. Antisteatotic effects of cerium oxide nanoparticles (CeO2NPs) have recently been shown in animal models of liver disease. However, it is unclear whether the activity of CeO2NPs is related solely to the decrease in oxidative stress or, in addition, they directly decrease liver fatty acid accumulation. To address this question, in this work, we used an in vitro model of hepatocellular steatosis, exposing HepG2 cells to oleic and palmitic acid. Cell uptake of CeO2NPs and their effect on oxidative stress and viability of hepatic cells cultured with H2O2 were also evaluated. Results show that CeO2NPs were uptaken by HepG2 cells and reduced oxidative stress and improved cell viability. Treatment with oleic and palmitic acid increased lipogenesis and the content of different fatty acids. CeO2NPs reduced palmitic and stearic acid and most fatty acids consisting of more than 18 carbon atoms. These effects were associated with significant changes in elongase and desaturase activity. In conclusion, CeO2NPs directly protected HepG2 cells from cell injury in oxidative stress conditions and reduced fatty acid content in steatotic conditions by inducing specific changes in fatty acid metabolism, thus showing potential in the treatment of NAFLD

    Metastatic Tissue Proteomic Profiling Predicts 5-Year Outcomes in Patients with Colorectal Liver Metastases

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers in the developed countries, and nearly 70% of patients with CRC develop colorectal liver metastases (CRLMs). During the last decades, several scores have been proposed to predict recurrence after CRLM resection. However, these risk scoring systems do not accurately reflect the prognosis of these patients. Therefore, this investigation was designed to identify a proteomic profile in human hepatic tumor samples to classify patients with CRLM as 'mild' or 'severe' based on the 5-year survival. The study was performed on 85 CRLM tumor samples. Firstly, to evaluate any distinct tumor proteomic signatures between mild and severe CRLM patients, a training group of 57 CRLM tumor samples was characterized by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, and a classification and regression tree (CART) analysis was subsequently performed. Finally, 28 CRLM tumor samples were used to confirm and validate the results obtained. Based on all the protein peaks detected in the training group, the CART analysis was generated, and four peaks were considered to be the most relevant to construct a diagnostic algorithm. Indeed, the multivariate model yielded a sensitivity of 85.7% and a specificity of 86.1%, respectively. In addition, the receiver operating characteristic (ROC) curve showed an excellent diagnostic accuracy to discriminate mild from severe CRLM patients (area under the ROC: 0.903). Finally, the validation process yielded a sensitivity and specificity of 68.8% and 83.3%, respectively. We identified a proteomic profile potentially useful to determine the prognosis of CRLM patients based on the 5-year survival

    Epigenome-Wide Comparative Study Reveals Key Differences Between Mixed Connective Tissue Disease and Related Systemic Autoimmune Diseases

    Get PDF
    Mixed Connective Tissue Disease (MCTD) is a rare complex systemic autoimmune disease (SAD) characterized by the presence of increased levels of anti-U1 ribonucleoprotein autoantibodies and signs and symptoms that resemble other SADs such as systemic sclerosis (SSc), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Due to its low prevalence, this disease has been very poorly studied at the molecular level. We performed for the first time an epigenome-wide association study interrogating DNA methylation data obtained with the Infinium MethylationEPIC array from whole blood samples in 31 patients diagnosed with MCTD and 255 healthy subjects. We observed a pervasive hypomethylation involving 170 genes enriched for immune-related function such as those involved in type I interferon signaling pathways or in negative regulation of viral genome replication. We mostly identified epigenetic signals at genes previously implicated in other SADs, for example MX1, PARP9, DDX60, or IFI44L, for which we also observed that MCTD patients exhibit higher DNA methylation variability compared with controls, suggesting that these sites might be involved in plastic immune responses that are relevant to the disease. Through methylation quantitative trait locus (meQTL) analysis we identified widespread local genetic effects influencing DNA methylation variability at MCTD-associated sites. Interestingly, for IRF7, IFI44 genes, and the HLA region we have evidence that they could be exerting a genetic risk on MCTD mediated through DNA methylation changes. Comparison of MCTD-associated epigenome with patients diagnosed with SLE, or Sjogren's Syndrome, reveals a common interferon-related epigenetic signature, however we find substantial epigenetic differences when compared with patients diagnosed with rheumatoid arthritis and systemic sclerosis. Furthermore, we show that MCTD-associated CpGs are potential epigenetic biomarkers with high diagnostic value. Our study serves to reveal new genes and pathways involved in MCTD, to illustrate the important role of epigenetic modifications in MCTD pathology, in mediating the interaction between different genetic and environmental MCTD risk factors, and as potential biomarkers of SADs

    A constellation of horrors: analysis and visualization of the #Cuéntalo movement

    Get PDF
    In this work, we analyze content and structure of the Twitter trending topic #cuentalo with the purpose of providing a visualization of the movement. A supervised learning methodology is used to train the classifying algorithms with hand-labeled observations. The methodology allows us to classify each tweet according to its role in the movement.Peer ReviewedPostprint (published version

    Cerium Oxide Nanoparticles Protect against Oxidant Injury and Interfere with Oxidative Mediated Kinase Signaling in Human-Derived Hepatocytes

    Get PDF
    Cerium oxide nanoparticles (CeO2NPs) possess powerful antioxidant properties, thus emerging as a potential therapeutic tool in non-alcoholic fatty liver disease (NAFLD) progression, which is characterized by a high presence of reactive oxygen species (ROS). The aim of this study was to elucidate whether CeO2NPs can prevent or attenuate oxidant injury in the hepatic human cell line HepG2 and to investigate the mechanisms involved in this phenomenon. The effect of CeO2NPs on cell viability and ROS scavenging was determined, the differential expression of pro-inflammatory and oxidative stress-related genes was analyzed, and a proteomic analysis was performed to assess the impact of CeO2NPs on cell phosphorylation in human hepatic cells under oxidative stress conditions. CeO2NPs did not modify HepG2 cell viability in basal conditions but reduced H2O2- and lipopolysaccharide (LPS)-induced cell death and prevented H2O2-induced overexpression of MPO, PTGS1 and iNOS. Phosphoproteomic analysis showed that CeO2NPs reverted the H2O2-mediated increase in the phosphorylation of peptides related to cellular proliferation, stress response, and gene transcription regulation, and interfered with H2O2 effects on mTOR, MAPK/ERK, CK2A1 and PKACA signaling pathways. In conclusion, CeO2NPs protect HepG2 cells from cell-induced oxidative damage, reducing ROS generation and inflammatory gene expression as well as regulation of kinase-driven cell survival pathways

    Bespoken nanoceria: A new effective treatment in experimental hepatocellular carcinoma

    Get PDF
    Background and aims: Despite the availability of new-generation drugs, hepatocellular carcinoma (HCC) is still the third most frequent cause of cancer-related deaths worldwide. Cerium oxide nanoparticles (CeO2 NPs) have emerged as an antioxidant agent in experimental liver disease because of their antioxidant, anti-inflammatory, and antisteatotic properties. In the present study, we aimed to elucidate the potential of CeO2 NPs as therapeutic agents in HCC. Approach and results: HCC was induced in 110 Wistar rats by intraperitoneal administration of diethylnitrosamine for 16 weeks. Animals were treated with vehicle or CeO2 NPs at weeks 16 and 17. At the eighteenth week, nanoceria biodistribution was assessed by mass spectrometry (MS). The effect of CeO2 NPs on tumor progression and animal survival was investigated. Hepatic tissue MS-based phosphoproteomics as well as analysis of principal lipid components were performed. The intracellular uptake of CeO2 NPs by human ex vivo perfused livers and human hepatocytes was analyzed. Nanoceria was mainly accumulated in the liver, where it reduced macrophage infiltration and inflammatory gene expression. Nanoceria treatment increased liver apoptotic activity, while proliferation was attenuated. Phosphoproteomic analysis revealed that CeO2 NPs affected the phosphorylation of proteins mainly related to cell adhesion and RNA splicing. CeO2 NPs decreased phosphatidylcholine-derived arachidonic acid and reverted the HCC-induced increase of linoleic acid in several lipid components. Furthermore, CeO2 NPs reduced serum alpha-protein levels and improved the survival of HCC rats. Nanoceria uptake by ex vivo perfused human livers and in vitro human hepatocytes was also demonstrated. Conclusions: These data indicate that CeO2 NPs partially revert the cellular mechanisms involved in tumor progression and significantly increase survival in HCC rats, suggesting that they could be effective in patients with HCC. © 2020 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of American Association for the Study of Liver Diseases

    Compartir ideas, la universidad va al instituto. Análisis de la primera edición de un proyecto de aprendizaje servicio transversal a la Universidad de Barcelona

    Get PDF
    Esta comunicación presenta las principales claves de análisis y evaluación de la 1a edición del proyecto Compartir Ideas. La Universidad va al instituto. Este es un proyecto de aprendizaje servicio transversal que consiste en un ciclo de conferencias-taller impartidas por estudiantes de la UB sobre temes de interés general relacionados con sus estudios. El objetivo es compartir conocimientos y conversar sobre un tema que la universidad trabaja y que será relevante para la formación del alumnado de secundaria.El proyecto cuenta con el apoyo del Vicerectorado de Política Docente y Lingüística de la Universitat de Barcelona

    Integrative epigenomics in Sjögren´s syndrome reveals novel pathways and a strong interaction between the HLA, autoantibodies and the interferon signature

    Get PDF
    Primary Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population

    Vascular endothelial growth factor and angiopoietin-2 play a major role in the pathogenesis of vascular leakage in cirrhotic rats.

    Get PDF
    Background and aims: The extent and molecular mechanisms governing plasma extravasation and formation of ascites in cirrhosis are unknown. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are endogenous substances with powerful vascular permeability effects. We assessed regional blood flow, vascular leakage, mRNA and tissular expression of VEGF-A and Ang-2 and vascular permeability following VEGF receptor 2 blockade in control and cirrhotic rats to define the vascular territories showing altered vascular permeability in cirrhosis and to determine whether VEGF-A and Ang-2 are involved in this phenomenon. Methods: Arterial blood flow was analysed with the coloured microsphere method. Vascular leakage was measured and visualised with the dye Evan¿s Blue and colloidal carbon techniques, respectively. VEGF-A and Ang-2 expression were determined by real-time polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. The effect on vascular permeability induced by VEGFR2 blockade was assessed by administration of the receptor inhibitor SU11248. Results: Arterial blood flow was increased in the mesentery, pancreas and small intestine but not in the kidney and spleen of cirrhotic rats as compared to controls. Increased vascular leakage was observed in the mesentery and liver, where colloidal carbon spread from microvessels to the adjacent fibrotic tracts. Increased hepatic and mesenteric expression of VEGF-A and Ang-2 was found in cirrhotic rats as compared to controls. Blockade of VEGFR2 markedly reduced hepatic and mesenteric vascular leakage in cirrhotic rats. Conclusions: Enhanced endothelial permeability is restricted to the hepatic and mesenteric vascular beds in cirrhotic rats with ascites and VEGF-A and Ang-2 are key factors in the signalling pathways regulating this dysfunction

    Sipa1l1 is an early biomarker of liver fibrosis in CCl4-treated rats

    Get PDF
    At present, several procedures are used for staging liver fibrosis. However, these methods may involve clinical complications and/or present diagnostic uncertainty mainly in the early stages of the disease. Thus, this study was designed to unveil new non-invasive biomarkers of liver fibrosis in an in vivo model of fibrosis/cirrhosis induction by CCl4 inhalation by using a label-free quantitative LC-MS/MS approach. We analyzed 94 serum samples from adult Wistar rats with different degrees of liver fibrosis and 36 control rats. Firstly, serum samples from 18 CCl4-treated rats were clustered into three different groups according to the severity of hepatic and the serum proteome was characterized by label-free LC-MS/MS. Furthermore, three different pooled serum samples obtained from 16 control Wistar rats were also analyzed. Based on the proteomic data obtained, we performed a multivariate analysis which displayed three main cell signaling pathways altered in fibrosis. In cirrhosis, more biological imbalances were detected as well as multi-organ alterations. In addition, hemopexin and signal-induced proliferation-associated 1 like 1 (SIPA1L1) were selected as potential serum markers of liver fibrogenesis among all the analyzed proteins. The results were validated by ELISA in an independent group of 76 fibrotic/cirrhotic rats and 20 controls which confirmed SIPA1L1 as a potential non-invasive biomarker of liver fibrosis. In particular, SIPA1L1 showed a clear diminution in serum samples from fibrotic/cirrhotic rats and a great accuracy at identifying early fibrotic stages. In conclusion, the proteomic analysis of serum samples from CCl4-treated rats has enabled the identification of SIPA1L1 as a non-invasive marker of early liver fibrosis. © 2016. Published by The Company of Biologists Ltd
    corecore