18 research outputs found

    Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation

    Get PDF
    Classical macrophage activation is inhibited by the CD200 receptor (CD200R). Here, we show that CD200R expression was specifically induced on human in vitro polarized macrophages of the alternatively activated M2a subtype, generated by incubation with IL-4 or IL-13. In mice, peritoneal M2 macrophages, elicited during infection with the parasites Taenia crassiceps or Tryponosoma brucei brucei, expressed increased CD200R levels compared to those derived from uninfected mice. However, in vitro stimulation of mouse peritoneal macrophages and T crassiceps infection in IL-4-/- and IL-4R-/- mice showed that, in contrast to humans, induction of CD200R in mice was not IL-4 or IL-13 dependent. Our data identify CD200R as a suitable marker for alternatively activated macrophages in humans and corroborate observations of distinct species- and/or site-specific mechanisms regulating macrophage polarization in mouse and man. Copyright (C) 2009 S. Karger AG, Base

    A Family of Plasmodesmal Proteins with Receptor-Like Properties for Plant Viral Movement Proteins

    Get PDF
    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement

    Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells

    No full text
    The EGF-TM7 receptors CD97 and EMR2 are heptahelical molecules predominantly expressed on leukocytes. A characteristic of these receptors is their ability to interact with cellular ligands via the N-terminal epidermal growth factor (EGF)-like domains. The first two EGF domains of CD97 (but not EMR2) bind CD55 (decay-accelerating factor), while the fourth EGF domain of both CD97 and EMR2 interacts with the glycosaminoglycan chondroitin sulfate (CS). Using fluorescent beads coated with soluble recombinant CD97 and EMR2 protein, and isoform-specific monoclonal antibodies, we have determined the cellular and molecular characteristics of the interaction with CS. The fourth EGF domain of CD97 and EMR2 is expressed on activated lymphocytes and myeloid cells, whereas the ligand is specifically found on B cells within the peripheral blood. The interaction between CD97/EMR2 and CS may therefore play a role in the interaction of activated T cells, dendritic cells, and macrophages with B cell

    EMR1, the human homolog of F4/80, is an eosinophil-specific receptor

    No full text
    The EGF-TM7 F4/80 is a defining marker of murine macrophage populations. Applying flow cytometric analysis using the newly generated mAb A10, and quantitative real-time PCR, we here report the surprising observation that the human ortholog of F4/80, EGF-like module containing mucin-like hormone receptor (EMR)1, is absent on mononuclear phagocytic cells including monocytes, macrophages, and myeloid dendritic cells. Unexpectedly, we found that EMR1 expression is restricted to eosinophilic granulocytes, where expression is overlapping with the eotaxin receptor CCR3 and the immunoglobulin-like lectin Siglec-8. Absence on other leukocytes, including basophils, implies that EMR1 is a highly specific marker for eosinophils in human

    The human EGF-TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells

    No full text
    The EGF-TM7 family is a group of class B seven-span transmembrane (TM7) receptors expressed predominantly by cells of the immune system. Family members CD97, EMR1, EMR2, EMR3, and ETL are characterized by an extended extracellular region with a variable number of N-terminal epidermal growth factor (EGF)-like domains coupled to a TM7 domain by a stalk. The EGF domain region of the recently identified EMR2 differs from that of CD97 in only 6 out of 236 amino acids. Although small, this difference has been shown to alter ligand specificity. To analyze the structure and cellular distribution of EMR2, a specific monoclonal antibody (2A1) was generated. Use of 2A1 has demonstrated EMR2, like CD97, to be expressed as a heterodimeric receptor consisting of an extracellular alpha part and a TM7/cytoplasmic beta part. Analysis of EMR2 expression on primary blood leukocytes, on hematopoietic cells lines, and in situ revealed a myeloid-restricted profile. Highest expression levels were detected on the more mature CD16(+) blood monocytes, on macrophages, and on BDCA-3(+) myeloid DC, whereas little if any expression was found on granulocytes. Unlike CD97, no expression was observed on resting or activated lymphocytes. Different expression patterns and the inability of EMR2 to interact with the CD97 ligand CD55 indicate that the molecular twins EMR2 and CD97 likely have nonredundant function

    Differential expression of the EGF-TM7 family members CD97 and EMR2 in lipid-laden macrophages in atherosclerosis, multiple sclerosis and Gaucher disease

    No full text
    The members of the epidermal growth factor (EGF)-transmembrane (TM)7 family of adhesion class G-protein coupled receptors are abundantly expressed by cells of the myeloid lineage. A detailed investigation of their expression by functional subsets of activated macrophages is still lacking. Therefore, we determined the expression of CD97, EGF module-containing mucin-like receptor (EMR)2 and EMR3 by monocyte-derived macrophages experimentally polarized in vitro. This was compared to three types of disease-associated lipid-laden macrophages displaying an alternatively activated phenotype in situ. Polarization in vitro towards classically activated M1 versus alternatively activated M2 extremes of macrophage activation did not result in a congruent regulation of EGF-TM7 receptor mRNA and protein except for a down-regulation of CD97 by IL-10. In contrast, macrophages handling lipid overload in vivo displayed differences in the expression of CD97 and EMR2. While foamy macrophages in atherosclerotic vessels expressed both CD97 and EMR2, foam cells in multiple sclerosis brain expressed CD97, but only little EMR2. Foam cell formation in vitro by oxidized LDL and myelin did not affect CD97 or EMR2 expression. Gaucher spleen cells accumulating glucosylceramide expressed very high levels of CD97 and EMR2. These findings indicate that complex cellular expression programmes rather than activation modes regulate the expression of EGF-TM7 receptors in macrophages. (C) 2010 Elsevier B.V. All rights reserve
    corecore