7 research outputs found

    PhP.B enhanced adeno-associated virus mediated-expression following systemic delivery or direct brain administration

    Get PDF
    Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood-brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell-based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Transduction patterns in the CNS following various routes of AAV-5-mediated gene delivery

    Get PDF
    Various administration routes of adeno-associated virus (AAV)-based gene therapy have been examined to target the central nervous system to answer the question what the most optimal delivery route is for treatment of the brain with certain indications. In this study, we evaluated AAV5 vector system for its capability to target the central nervous system via intrastriatal, intrathalamic or intracerebroventricular delivery routes in rats. AAV5 is an ideal candidate for gene therapy because of its relatively low level of existing neutralizing antibodies compared to other serotypes, and its broad tissue and cell tropism. Intrastriatal administration of AAV5-GFP resulted in centralized localized vector distribution and expression in the frontal part of the brain. Intrathalamic injection showed transduction and gradient expression from the rostral brain into lumbar spinal cord, while intracerebroventricular administration led to a more evenly, albeit relatively superficially distributed, transduction and expression throughout the central nervous system. To visualize the differences between localized and intra-cerebral spinal fluid administration routes, we compared intrastriatal to intracerebroventricular and intrathecal administration of AAV5-GFP. Together, our results demonstrate that for efficient transgene expression, various administration routes can be applied.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Loss of imprinting of IGF2 characterises high IGF2 mRNA-expressing type of fibroblast-like synoviocytes in rheumatoid arthritis

    Get PDF
    OBJECTIVE: Increased expression of insulin-like growth factor 2 (IGF2) by fibroblast-like synoviocytes (FLS) was associated with low inflammatory synovium of patients with rheumatoid arthritis (RA). The aim of this study was to analyse whether the differential expression of IGF2, whose expression is normally restricted to one allele, is due to activation of the normally suppressed allele. METHODS: IGF2 gene expression of RA FLS was quantified by quantitative real-time PCR. FLS heterozygous for a 3'-untranslated region IGF2 polymorphism were selected to measure the relative contribution of the allelic transcripts by allele-specific transcript quantification assay. Proliferation was determined by [(3)H]thymidine incorporation. RESULTS: IGF2 was shown to contribute to RA FLS proliferation. FLS could be classified in IGF2 high and IGF2 low-expressing cell lines. Allelic IGF2 transcript quantification analysis revealed that in part of the RA FLS the normally suppressed allele was activated, resulting in biallelic expression of the IGF2 gene. Biallelic expression was associated with increased levels of IGF2 mRNA production. CONCLUSION: The findings indicate that the imprinting status of IGF2 might underlie the increased expression of IGF2, which may contribute to autonomous growth of RA FLS of low inflammatory synovial tissue

    Lysine Acetyltransferase PCAF Is a Key Regulator of Arteriogenesis

    Get PDF
    Therapeutic arteriogenesis, i.e., expansive remodeling of pre-existing collaterals, using single-action factor therapies has not been as successful as anticipated. Modulation of factors that act as a master switch for relevant gene programs may prove more effective. Transcriptional co-activator P300/CBP-associated factor (PCAF) has histone acetylating activity and promotes transcription of multiple inflammatory genes. Because arteriogenesis is an inflammation-driven process, we hypothesized that PCAF acts as multifactorial regulator of arteriogenesis

    Endoskopische Therapieverfahren im oberen Gastrointestinaltrakt

    No full text
    corecore