1,623 research outputs found

    Effects of Compton scattering on the neutron star radius constraints in rotation-powered millisecond pulsars

    Full text link
    The aim of this work is to study the possible effects and biases on the radius constraints for rotation-powered millisecond pulsars when using Thomson approximation to describe electron scattering in the atmosphere models, instead of using exact formulation for Compton scattering. We compare the differences between the two models in the energy spectrum and angular distribution of the emitted radiation. We also analyse a self-generated synthetic phase-resolved energy spectrum, based on Compton atmosphere and the most X-ray luminous rotation-powered millisecond pulsars observed by the Neutron star Interior Composition ExploreR (NICER). We derive constraints for the neutron star parameters using both the Compton and Thomson models. The results show that the method works by reproducing the correct parameters with the Compton model. However, biases are found in size and the temperature of the emitting hot spot, when using the Thomson model. The constraints on the radius are still not significantly changed, and therefore the Thomson model seems to be adequate if we are interested only in the radius measurements using NICER.Comment: 6 pages, 9 figures, published in A&

    Simulations of gamma-ray burst afterglows with a relativistic kinetic code

    Full text link
    This paper introduces a kinetic code that simulates gamma-ray burst (GRB) afterglow emission from the external forward shock and presents examples of some of its applications. One interesting research topic discussed in the paper is the high-energy radiation produced by Compton scattering of the prompt GRB photons against the shock-accelerated electrons. The difference between the forward shock emission in a wind-type and a constant-density medium is also studied, and the emission due to Maxwellian electron injection is compared to the case with pure power-law electrons. The code calculates the time-evolving photon and electron distributions in the emission region by solving the relativistic kinetic equations for each particle species. For the first time, the full relativistic equations for synchrotron emission/absorption, Compton scattering, and pair production/annihilation were applied to model the forward shock emission. The synchrotron self-absorption thermalization mechanism, which shapes the low-energy end of the electron distribution, was also included in the electron equation. The simulation results indicate that inverse Compton scattering of the prompt GRB photons can produce a luminous TeV emission component, even when pair production in the emission region is taken into account. This very high-energy radiation may be observable in low-redshift GRBs. The test simulations also show that the low-energy end of a pure power-law distribution of electrons can thermalize owing to synchrotron self-absorption in a wind-type environment, but without an observable impact on the radiation spectrum. Moreover, a flattening in the forward shock X-ray light curve may be expected when the electron injection function is assumed to be purely Maxwellian instead of a power law.Comment: 16 pages, 11 figures, accepted for publication in A&

    Model atmospheres of X-ray bursting neutron stars

    Full text link
    We present an extended set of model atmospheres and emergent spectra of X-ray bursting neutron stars in low mass X-ray binaries. Compton scattering is taken into account. The models were computed in LTE approximation for six different chemical compositions: pure hydrogen and pure helium atmospheres, and atmospheres with a solar mix of hydrogen and helium and various heavy elements abundances: Z = 1, 0.3, 0.1, and 0.01 Z_sun, for three values of gravity, log g =14.0, 14.3, and 14.6 and for 20 values of relative luminosity l = L/L_Edd in the range 0.001 - 0.98. The emergent spectra of all models are fitted by diluted blackbody spectra in the observed RXTE/PCA band 3 - 20 keV and the corresponding values of color correction factors f_c are presented. We also show how to use these dependencies to estimate the neutron star's basic parameters.Comment: 2 pages, 1 figure, conference "Astrophysics of Neutron Stars - 2010" in honor of M. Ali Alpar, Izmir, Turke

    X-ray burst induced spectral variability in 4U 1728-34

    Full text link
    Aims. INTEGRAL has been monitoring the Galactic center region for more than a decade. Over this time INTEGRAL has detected hundreds of type-I X-ray bursts from the neutron star low-mass X-ray binary 4U 1728-34, a.k.a. "the slow burster". Our aim is to study the connection between the persistent X-ray spectra and the X-ray burst spectra in a broad spectral range. Methods. We performed spectral modeling of the persistent emission and the X-ray burst emission of 4U 1728-34 using data from the INTEGRAL JEM-X and IBIS/ISGRI instruments. Results. We constructed a hardness intensity diagram to track spectral state variations. In the soft state the energy spectra are characterized by two thermal components - likely from the accretion disc and the boundary/spreading layer - together with a weak hard X-ray tail that we detect in 4U 1728-34 for the first time in the 40 to 80 keV range. In the hard state the source is detected up to 200 keV and the spectrum can be described by a thermal Comptonization model plus an additional component: either a powerlaw tail or reflection. By stacking 123 X-ray bursts in the hard state, we detect emission up to 80 keV during the X-ray bursts. We find that during the bursts the emission above 40 keV decreases by a factor of about three with respect to the persistent emission level. Conclusions. Our results suggest that the enhanced X-ray burst emission changes the spectral properties of the accretion disc in the hard state. The likely cause is an X-ray burst induced cooling of the electrons in the inner hot flow near the neutron star.Comment: 7 pages, 5 figures, Accepted for publication in A&

    Photon breeding mechanism in relativistic jets: astrophysical implications

    Full text link
    Photon breeding in relativistic jets involves multiplication of high-energy photons propagating from the jet to the external environment and back with the conversion into electron-positron pairs. The exponential growth of the energy density of these photons is a super-critical process powered by the bulk energy of the jet. The efficient deceleration of the jet outer layers creates a structured jet morphology with the fast spine and slow sheath. In initially fast and high-power jets even the spine can be decelerated efficiently leading to very high radiative efficiencies of conversion of the jet bulk energy into radiation. The decelerating, structured jets have angular distribution of radiation significantly broader than that predicted by a simple blob model with a constant Lorentz factor. This reconciles the discrepancy between the high Doppler factors determined by the fits to the spectra of TeV blazars and the low apparent velocities observed at VLBI scales as well as the low jet Lorentz factors required by the observed statistics and luminosity ratio of Fanaroff-Riley I radio galaxies and BL Lac objects. Photon breeding produces a population of high-energy leptons in agreement with the constraints on the electron injection function required by spectral fits of the TeV blazars. Relativistic pairs created outside the jet and emitting gamma-rays by inverse Compton process might explain the relatively high level of the TeV emission from the misaligned jet in the radio galaxies. The mechanism reproduces basic spectral features observed in blazars including the blazar sequence (shift of the spectral peaks towards lower energies with increasing luminosity). The mechanism is very robust and can operate in various environments characterised by the high photon density.Comment: 6 pages, 3 figures, to appear in the proceedings of the HEPRO conference, September 24-28, 2007, Dublin, Irelan

    Joint spectral-timing modelling of the hard lags in GX 339-4: constraints on reflection models

    Full text link
    The X-ray variations of hard state black hole X-ray binaries above 2 keV show 'hard lags', in that the variations at harder energies follow variations at softer energies, with a time-lag \tau depending on frequency \nu approximately as \tau \propto \nu^{-0.7}. Several models have so far been proposed to explain this time delay, including fluctuations propagating through an accretion flow, spectral variations during coronal flares, Comptonisation in the extended hot corona or a jet, or time-delays due to large-scale reflection from the accretion disc. In principle these models can be used to predict the shape of the energy spectrum as well as the frequency-dependence of the time-lags, through the construction of energy-dependent response functions which map the emission as a function of time-delay in the system. Here we use this approach to test a simple reflection model for the frequency-dependent lags seen in the hard state of GX 339-4, by simultaneously fitting the model to the frequency-dependent lags and energy spectrum measured by XMM-Newton in 2004 and 2009. Our model cannot simultaneously fit both the lag and spectral data, since the relatively large lags require an extremely flared disc which subtends a large solid angle to the continuum at large radii, in disagreement with the observed Fe K\alpha emission. Therefore, we consider it more likely that the lags > 2 keV are caused by propagation effects in the accretion flow, possibly related to the accretion disc fluctuations which have been observed previously.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    Probing the possibility of hotspots on the central neutron star in HESS J1731-347

    Full text link
    The X-ray spectra of the neutron stars located in the centers of supernova remnants Cas A and HESS J1731-347 are well fit with carbon atmosphere models. These fits yield plausible neutron star sizes for the known or estimated distances to these supernova remnants. The evidence in favor of the presence of a pure carbon envelope at the neutron star surface is rather indirect and is based on the assumption that the emission is generated uniformly by the entire stellar surface. Although this assumption is supported by the absence of pulsations, the observational upper limit on the pulsed fraction is not very stringent. In an attempt to quantify this evidence, we investigate the possibility that the observed spectrum of the neutron star in HESS J1731-347 is a combination of the spectra produced in a hydrogen atmosphere of the hotspots and of the cooler remaining part of the neutron star surface. The lack of pulsations in this case has to be explained either by a sufficiently small angle between the neutron star spin axis and the line of sight, or by a sufficiently small angular distance between the hotspots and the neutron star rotation poles. As the observed flux from a non-uniformly emitting neutron star depends on the angular distribution of the radiation emerging from the atmosphere, we have computed two new grids of pure carbon and pure hydrogen atmosphere model spectra accounting for Compton scattering. Using new hydrogen models, we have evaluated the probability of a geometry that leads to a pulsed fraction below the observed upper limit to be about 8.2 %. Such a geometry thus seems to be rather improbable but cannot be excluded at this stage.Comment: 8 pages, 14 figures. Accepted for publication in A&
    • …
    corecore