16 research outputs found

    A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge

    Get PDF
    During wastewater treatment and drinking water production, significant amounts of ferric sludge (comprising ferric oxy-hydroxides and FePO4) are generated that require disposal. This practice has a major impact on the overall treatment cost as a result of both chemical addition and the disposal of the generated chemical sludge. Iron sulfide (FeS) precipitation via sulfide addition to ferric phosphate (FePO4) sludge has been proven as an effective process for phosphate recovery. In turn, iron and sulfide could potentially be recovered from the FeS sludge, and recycled back to the process. In this work, a novel process was investigated at lab scale for the recovery of soluble iron and sulfide from FeS sludge. Soluble iron is regenerated electrochemically at a graphite anode, while sulfide is recovered at the cathode of the same electrochemical cell. Up to 60±18% soluble Fe and 46±11% sulfide were recovered on graphite granules for up-stream reuse. Peak current densities of 9.5±4.2Am-2 and minimum power requirements of 2.4±0.5kWhkgFe-1 were reached with real full strength FeS suspensions. Multiple consecutive runs of the electrochemical process were performed, leading to the successful demonstration of an integrated process, comprising FeS formation/separation and ferric/sulfide electrochemical regeneration

    A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge

    Get PDF
    During wastewater treatment and drinking water production, significant amounts of ferric sludge (comprising ferric oxy-hydroxides and FePO4) are generated that require disposal. This practice has a major impact on the overall treatment cost as a result of both chemical addition and the disposal of the generated chemical sludge. Iron sulfide (FeS) precipitation via sulfide addition to ferric phosphate (FePO4) sludge has been proven as an effective process for phosphate recovery. In turn, iron and sulfide could potentially be recovered from the FeS sludge, and recycled back to the process. In this work, a novel process was investigated at lab scale for the recovery of soluble iron and sulfide from FeS sludge. Soluble iron is regenerated electrochemically at a graphite anode, while sulfide is recovered at the cathode of the same electrochemical cell. Up to 60±18% soluble Fe and 46±11% sulfide were recovered on graphite granules for up-stream reuse. Peak current densities of 9.5±4.2Am-2 and minimum power requirements of 2.4±0.5kWhkgFe-1 were reached with real full strength FeS suspensions. Multiple consecutive runs of the electrochemical process were performed, leading to the successful demonstration of an integrated process, comprising FeS formation/separation and ferric/sulfide electrochemical regeneration

    Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants

    No full text
    Water reclamation plants frequently utilise reverse osmosis (RO), generating a concentrated reject stream as a by-product. The concentrate stream contains salts, and dissolved organic compounds, which are recalcitrant to biological treatment, and may have an environmental impact due to colour and embedded nitrogen. In this study, we characterise organic compounds in RO concentrates (ROC) and treated ROC (by coagulation, adsorption, and advanced oxidation) from two full-scale plants, assessing the diversity and treatability of colour and organic compounds containing nitrogen. One of the plants was from a coastal catchment, while the other was inland. Stirred cell membrane fractionation was applied to fractionate the treated ROC, and untreated ROC along with chemical analysis (DOC, DON, COD), colour, and fluorescence excitation-emission matrix (EEM) scans to characterise changes within each fraction. In both streams, the largest fraction contained 10 kDa molecules, with 17-34% of organic compounds as COD. Iron coagulation affected a wider size range, with better removal of organics (41-49% as COD) at the same molar dosage. As with iron, adsorption reduced organics of a broader size range, including organic nitrogen (26-47%). Advanced oxidation (UV/H2O2) was superior for complete decolourisation and provided superior organics removal (50-55% as COD). (C) 2011 Elsevier Ltd. All rights reserved

    Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment

    No full text
    The formation of N-nitrosodimethylamine (NDMA) is of major concern among wastewater recycling utilities practicing disinfection with chloramines. The NDMA formation potential (FP) test is a simple and straightforward method to evaluate NDMA precursor concentrations in waters. In this paper we show the NDMA FP results of a range of tertiary wastewater treatment plants that are also the source for production of recycled water using an Ultrafiltration - Reverse Osmosis (UF-RO) membrane process. The results indicate that the NDMA FP of different source waters range from 350 to 1020 +/- 20 ng/L. The fate of these NDMA precursors was also studied across the different stages of two Advanced Water Treatment Plants (AWTP) producing recycled water. These results show that more than 98.5 +/- 0.5% of NDMA precursors are effectively removed by the Reverse Osmosis (RO) membranes used at the AWTPs. This drastically reduces any potential for re-formation of NDMA after the RO stage even if chloramines may be present (or added) there

    Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery

    No full text
    The use of sulfide to form iron sulfide precipitates is an attractive option for separation and recovery of phosphorus and ferric iron from ferric phosphate sludge generated in wastewater treatment. The key factors affecting the simultaneous generation and separation of iron sulfide precipitates and phosphate solution from ferric phosphate sludge have so far not been thoroughly investigated. This study therefore focuses on the recovery of phosphorus from synthetic sludge by controlled sulfide addition under different operating conditions. The factors that affect the phosphorus recovery, as well as the optimal process conditions to achieve an effective solid-liquid separation, were investigated. The separation of the FeSx particles is a significant challenge due to the colloidal nature of the particles formed. Faster separation and higher phosphorus recovery was achieved when operating at pH 4 with dosing times of at least 1 h. At this pH, phosphorus recovery of 70 +/- 6% was reached at the stoichiometric S/Fe molar ratio of 1.5, increasing to over 90% recovery at a S/Fe molar ratio of 2.5. Zeta potential results confirmed the colloidal nature of the iron sulfide precipitate, with the isoelectric point around pH 4, explaining the fast separation of the FeSx particles at this pH. (C) 2013 Elsevier Inc. All rights reserved

    Fate of Perfluorochemicals (PFCs) in an Advanced Water Treatment Plant

    No full text
    Two perfluoroalkyl chemicals (PFCs), perfluoroctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), have been detected widely at low levels in biota and humans. Secondary sewage treatment plants (STPs) do not effectively remove these compounds; hence STP effluents are recognized point sources to the aquatic environment. Here we sampled water from various stages of an advanced water treatment plant, utilizing microfiltration, reverse osmosis and advanced oxidation, and assessed the removal of 15 PFCs in the system. The plant studied takes effluent from several STPs, producing up to 66 ML/day of purified recycled water. Grab samples were collected at various stages of the treatment train. Analysis showed PFCs to be present in the influent at concentrations of 78.9 – 151.2 ng/L (Σ15PFCs), but almost completely removed by reverse osmosis. PFCs were detected above reporting limits at 4 of the 7 sampling points. This work provides a measure of PFCs in Australian recycled water, contributes data on the fate of these compounds in advanced water treatment, and illustrates their efficient removal by RO under operational conditions. Analytical variability appeared to be less than variability between sampling events, indicating in future composite samples or flow proportional sampling will improve data quality
    corecore